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ABSTRACT
Understanding the origins of enhanced reactivity of supported, subnanometer in size, metal oxide clusters is challenging due to the scarcity
of methods capable to extract atomic-level information from the experimental data. Due to both the sensitivity of X-ray absorption near
edge structure (XANES) spectroscopy to the local geometry around metal ions and reliability of theoretical spectroscopy codes for modeling
XANES spectra, supervised machine learning approach has become a powerful tool for extracting structural information from the experi-
mental spectra. Here, we present the application of this method to grazing incidence XANES spectra of size-selective Cu oxide clusters on flat
support, measured in operando conditions of the methanation reaction. We demonstrate that the convolution neural network can be trained
on theoretical spectra and utilized to “invert” experimental XANES data to obtain structural descriptors—the Cu–Cu coordination numbers.
As a result, we were able to distinguish between different structural motifs (Cu2O-like and CuO-like) of Cu oxide clusters, transforming in
reaction conditions, and reliably evaluate average cluster sizes, with important implications for the understanding of structure, composition,
and function relationships in catalysis.

© 2019 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/1.5126597., s

INTRODUCTION

Metal oxides as heterogeneous catalysts have received con-
siderable attention in both fundamental research and industrial
applications.1–4 For instance, metal oxide catalysts (MOCs) possess
high catalytic performance and robustness in the water oxidation
reaction.1,5,6 In industry, MOCs are crucial for the asphaltene

adsorption to enhance the oil discovery.2 The metal oxide nanocata-
lysts, in particular, display unique electronic properties due to their
non-bulk-like coordination geometry and redox properties.7–9 To
understand the activities of metal oxide nanocatalysts, identifica-
tion of the active sites of the catalysts10–13 and, importantly, the
size and shape of the particles14–16 are required. The geometric
properties of nanoparticles play greater role in their activity
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mechanisms because of the larger surface-to-volume ratio,17 com-
pared to bulk-like particles. Due to the large range of possible struc-
tures, the catalytic activities of nanocatalysts exhibit large varia-
tion with different geometry.14–16,18 Besides, the nanocatalysts can
undergo agglomeration under reaction conditions,19,20 affecting
their catalytic activity.

In a toolbox of characterization methods tailored for under-
standing catalytic mechanisms, a prominent place is taken by the
operando method, in which the structure of the catalysts is ana-
lyzed in real time, during the reaction, and the reaction prod-
ucts are detected simultaneously with the structural measure-
ment to build the structure-reactivity relation.21–23 Due to the
formidable challenge that low metal loadings and high reaction
temperature and/or pressure present to many techniques, extended
X-ray absorption fine structure (EXAFS) spectroscopy,24–26 the
workhorse method for catalytic studies, is limited in its applica-
bility to MOCs. X-ray absorption near-edge structure (XANES)
is measured in the same X-ray absorption spectroscopy exper-
iment and has better signal-to-noise ratio than EXAFS; hence,
it can be advantageous for use in the in situ/operando catalytic
experiments.27 XANES is also sensitive to the arrangements of
atoms and electronic characteristics28–31 and is less affected by
structural disorder compared to EXAFS.24,26 For some model cat-
alysts, such as size-selective clusters supported on single crys-
tal surfaces, for which EXAFS data cannot be obtained due to
their ultra-low weight loadings, grazing incidence (GI) XANES
becomes a unique tool to monitor the transformations in the
oxidation state, structure, and/or size of the cluster.32–34 How-
ever, GI XANES has been rarely employed for structural char-
acterization due to the limitations in its quantitative analysis.
Recently, we demonstrated that a supervised machine learning-
based method enables the establishment of relation between
XANES spectral features and structural descriptors of monometal-
lic nanoparticles.35,36 By employing an artificial neural network
(NN) trained on the large set of theoretical XANES, we were
able to obtain metal-metal coordination numbers (CNs) and
investigate the structure of monometallic nanoparticles and size-
selective clusters.35–39 In all prior cases, we deliberately selected
well reduced systems to eliminate metal-nonmetal bonding that
would have complicated neural network training and applica-
tions. That limitation precludes the broad applicability of our NN-
based XANES analysis for operando studies, in which the changes
in chemical states of the catalysts may occur in real reaction
conditions.

In this work, we report the application of the convolution neu-
ral network-based method to analysis of the structure and chemical
state of size selective copper oxide clusters measured by XANES
during their catalytic reaction process. Copper oxide catalysts are
known for their good reactivity and selectivity in numerous oxida-
tion and reduction reactions.40–47 One of the important reactions is
CO2 methanation, which can assist the conversion of CO2 to chem-
ical feedstock and benefit the inhibition of CO2 emission.48,49 We
used GI XANES spectra collected for Cu size-selective clusters in
the operando experiment during the process of catalytic CO2 metha-
nation to extract information about the oxidation state and size of
the clusters. In what follows, we present our method for training
and validating NN, describe the experimental data chosen to illus-
trate its application to MOCs, and demonstrate the applicability

of this approach to extract their structural descriptors in operando
conditions.

NEURAL NETWORK TRAINING AND VALIDATION

The common route for NN construction is preparing train-
ing sets, training the NN, and validating the NN. From our previ-
ous works, it is known that for the construction of training set, we
need hundreds of thousands XANES data with unique and a priori
known labels (that is, structural descriptors). It is not feasible to
obtain such a large number of labeled data from experimental mea-
surements for this purpose. Ab initio XANES simulations could
be a good alternative to the experimental spectra, as demonstrated
in our prior work.35,36,39 Before planning the training with theory-
generated spectra, it is important to verify that a given method or
code used for simulations reliably reproduces standard compounds.
For example, FEFF950 is adequate for reproducing experimental
XANES of bulk Cu oxides, as illustrated in Fig. 1. The details of
the XANES simulation are given in Note I of the supplementary
material.

FIG. 1. Experimental and theoretical (calculated with FEFF9) XANES spectra for
the bulk Cu2O (a) and CuO (b) standard compounds.
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Verifying the sensitivity of XANES to the size and structure of
the nanoscale oxide is the necessary first step for any regression-
based method, in general, and NN-based method, in particular,
to work. Following the strategy, first implemented in Ref. 36, we
first examine the absorption site effect on XANES spectra, as illus-
trated in Figs. 2(a) and 2(b). Each spectrum in Figs. 2(a) and 2(b)
is labeled with two Cu–Cu CNs (for the first coordination shell
and second coordination shell) to represent the structure of copper

FIG. 2. Absorption site, cluster size, and motif effects on Cu K-edge XANES spec-
tra. Each spectrum in Figs. 2(a)–2(d) is correlated with Cu–Cu CNs on the first
and second coordination shells. [(a) and (b)] Site-specific XANES (XANES for the
specific atom) spectra for CuO and Cu2O, calculated with FEFF9. [(c) and (d)]
Particle-averaged XANES (averaged over all atoms in the particle) spectra for CuO
and Cu2O, calculated with FEFF9. (e) Experimental XANES of CuO bulk and CuO
clusters containing 4 and 12 Cu atoms.

oxide nanoparticles. By comparing the theoretical XANES (calcu-
lated by FEFF9) on different sites of CuO and Cu2O models (indi-
cated by their respective CNs of the 1st and 2nd nearest neighbors),
more pronounced features are captured by XANES for the cop-
per atom with the larger Cu–Cu CNs [Figs. 2(a) and 2(b)]. The
XANES spectrum for the copper atom in the inner shell of cop-
per oxide model has greater resemblance of the XANES spectrum
for the bulk of copper oxide. In contrast, XANES calculated for
the copper atom on the surface has relatively more smooth fea-
tures. After establishing the absorption site dependence, we exam-
ined the cluster size effect on XANES by averaging the site-specific
spectra over all atoms in the simulated CuO-like and Cu2O-like
clusters of different sizes and stoichiometries [Figs. 2(c) and 2(d)].
That procedure is described in greater detail below. The simu-
lated XANES spectra reveal that particles with larger sizes have
more pronounced features compared to the smaller particles, as
expected from their difference in the surface to volume ratios. As
shown in Fig. 2(e), experimental XANES spectra measured in the
Cu oxide clusters show a similar trend to have sharper features for
larger sizes as obtained for simulated clusters of the same motif
(CuO).

Similarly to our previous work,36 to build the training set for
NN, we first constructed several sets of Cartesian coordinates for
atoms residing in the sites that correspond to the crystal structure of
bulk CuO and Cu2O, and truncated the lists of coordinates to simu-
late clusters with various shapes (tetrahedral, octahedral, and cubic)
and sizes. This was accomplished by creating the cluster surfaces
using (100) and (111) planes of bulk CuO or Cu2O. The details of lat-
tice structure information for CuO and Cu2O are listed in Table S1
of the supplementary material. To generate more models, additional
CuO and Cu2O models were constructed by truncating the previ-
ous regular models with (100) and (111) planes. Furthermore, we
also constructed the planar structures with one or two layers of (111)
plane of CuO and Cu2O to describe the active structural motif, thin
film, which has been reported as an active phase for catalysis.51–53

As a result, we created 25 CuO models and 30 Cu2O models to
capture the diversity of CuxO nanostructures, which are relevant to
catalysis.

In the nanometer-scale nanoparticles and subnanometer clus-
ters, the interatomic distances can deviate from those in their respec-
tive bulk compounds42,54 due to the effects of size, adsorbates, and
support. For example, the nearest Cu–Cu distance for the bulk of
CuO is 2.93 Å. However, the Cu–Cu distance of the CuO cluster was
reported to be longer54 or shorter42 compared to the bulk. The short-
ening of the Cu–Cu distance in size-selected reduced Cu clusters
was reported by us earlier.39 To allow for this effect to be recog-
nized in the process of NN-based analysis, we isotropically stretched
or compressed the structures in our theoretical models to generate
more training sets. The distance between nearest copper atoms var-
ied from 2.784 Å to 3.077 Å for CuO models and from 2.879 Å and
3.182 Å in Cu2O models. These ranges bracket the reported Cu–Cu
distances for copper oxides available from EXAFS analyses or crys-
tallography data.42,54,55 To represent the size and shape of the clus-
ters, we choose the first few Cu–Cu coordination numbers as struc-
tural descriptors for each unique model. We preferred to rely on the
Cu–Cu CNs rather than on Cu–O CNs for this purpose because
the latter parameter is not a good descriptor of the cluster size,
geometry, and oxidation state in those cases when all Cu atoms are

J. Chem. Phys. 151, 164201 (2019); doi: 10.1063/1.5126597 151, 164201-3

© Author(s) 2019

https://scitation.org/journal/jcp
https://doi.org/10.1063/1.5126597#suppl


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

terminated by oxygens. The copper atoms on the surface have
smaller Cu–Cu CNs compared to the inner copper atoms, thus pro-
viding the desired sensitivity to the size and shape of the copper
oxide clusters. We illustrate the sensitivity of Cu–Cu CNs to the dif-
ferent size and shape of the copper oxide models in Figs. S1 and S2.
For different copper oxide models (e.g., Cu2O vs CuO), the Cu–Cu
CNs exhibit unique values. With the increase of the size of the mod-
els, the Cu–Cu CNs also get larger. For the models with same Cu–Cu
CNs of the first shell, the values of the Cu–Cu CNs of the second shell
provides additional sensitivity to the task of classification of different
models.

In order to construct a required (large) number of spectra in
the training set using FEFF9, we adopted a combinatorial approach,
first developed in Ref. 36, relying on randomly mixing several site-
specific XANES calculations for CuO and Cu2O models prepared
above. Each spectrum was labeled with first and second Cu–Cu CNs
as structural descriptors. The total size of the training set was 100 000
spectra for each of the CuO- and Cu2O-type models. In order to
compensate for the unknown X-ray energy shift between theoreti-
cal and experimental XANES spectra for each type of oxide clusters
(CuO- or Cu2O-like), we shifted all the theoretical XANES spectra
by ΔE (obtained from the difference in energy between experimen-
tal and theoretical XANES spectra for the respective bulk oxides).
Such an approach is reasonable because no visible shift was observed
in the XANES spectra between different experimental copper oxide
clusters. Furthermore, the convolution neural network we used for
machine learning has the advantage of shift invariance,56 which
means that the results will not depend strongly on the possible, small
(shown to be within a ±1 eV range, as tested in this work) mis-
match in the X-ray energy origins used in theory and experiment.
An alternative approach, relying on random energy shift between
different spectra from the training set, was also recently proposed.57

After the shift was applied, the spectra were interpolated to the
same energy scale from Emin = 8981.5 eV to Emax = 9059.3 eV. The
step size for the energy scale is 0.15 eV near Emin and increases to
1.5 eV near Emax. Following this step, all spectra were represented
as multidimensional vectors, containing 94 data points. Each data
point corresponded to the value of absorption coefficient at specific
energy.

The NN used in this work was a nonlinear function f (μ, θ)
= {C1,C2}, where μ represents the preprocessed XANES spectrum
(a vector with 94 points) as input and {C1,C2} represents the first
two CNs as output. The parameter space θ consists of the weights
and biases in the NN models.58 The purpose of the training process
is to optimize the parameter space θ to accurately correlate input
with output. Once the optimal parameters are found, the training
process is finished. More details of NN construction and training
are described in the supplementary material.

The accuracy of our NN was demonstrated by the theoretical
XANES calculated by FEFF9 for particles with different sizes and
shapes. Unlike the data set we used for the training, the spectra for
validation are particle-averaged spectra (averaged XANES for the
particle) corresponding to the real copper oxide models and not used
in the NN training process. In Fig. 3, we compare the true Cu–Cu
CNs on the first coordination shell with the predicted Cu–Cu CNs
for CuO and Cu2O models. The validation for the Cu–Cu CNs on
the second coordination shell is given in Fig. S3 of the supplemen-
tary material. According to the comparison result, NN can predict

FIG. 3. Validation of CuO (a) and Cu2O (b) neural networks using theoretical
XANES. True Cu–Cu CNs are compared with predicted Cu–Cu CNs of the first
coordination shell.

accurate CNs from the theoretical XANES for a large range of
particle sizes.

APPLICATION TO EXPERIMENTAL DATA

After the validation of our NNs, we applied them to the
unknown structures of supported ultra-small size-selected clusters
used in a recent work59 These copper-based clusters can be used,
for example, as catalysts for conversion of CO2 with hydrogen. The
data discussed in this paper were extracted from in situ grazing
incidence XANES (GI XANES) spectra collected on samples of 4-,
12-, or 20-atom Cu clusters deposited on zirconia support prepared
by atomic layer deposition and by supersonic cluster beam deposi-
tion, as exposed to CO2 and H2 under elevated temperatures reach-
ing 375 ○C. More experimental details are given in Note III of the
supplementary material.

The data extracted from the in situ XANES data were collected
and analyzed by multivariate curve resolution with the alternat-
ing least squares (MCR-ALS) method to obtain the mixing fraction
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of clusters of different oxidation states (CuO, Cu2O, and Cu).59

Because our NN method is designed for an idealized, pure metal
oxide phase (either CuO- or Cu2O-like), its test required access to
the corresponding phase-pure clusters, which were not found in the
series of spectra obtained in our operando experiments. We thus
selected those spectra collected and analyzed in Ref. 59, which had
the highest fractions of CuO or Cu2O phases based on the results of
the MCR-ALS analysis. The fractions of individual copper compo-
nents (CuO, Cu2O, and Cu) for the spectra are listed in Tables S2 and
S3. The sampling chosen for testing our NN prediction corresponds
to those temperatures, for which the XANES data, as analyzed by
MCR-ALS, indicated the presence of at least 70% of either CuO or
Cu2O phase. As a justification of validity of this approach, we note
that their XANES spectra have similar features with either CuO or
Cu2O bulk XANES spectra, thus validating their designation as tests
for NN validation purpose.

In Table S2, combining the spectra found (by MCR-ALS) to
correspond to the CuO-like clusters, we show the application results
of the CuO-trained NN model for extracting the first and second
Cu–Cu CNs from those XANES spectra. To interpret the results, the
correlation between the number of Cu atoms and the first Cu–Cu
CNs for the CuO models is shown in Fig. 4(a). All models shown
there were selected from the NN training and validation steps. Such
a correlation demonstrates that our method can be used for mea-
suring the cluster size, as evident here from the correct detection of
the number of atoms (which was known a priori from the cluster
deposition experiment60,61). To check the capability of our NN to
distinguish between CuO and Cu2O motifs, we applied our trained
Cu2O NN model to the XANES spectra and showed the predicted
CNs in Table S2. Not surprisingly, the predicted CNs from Cu2O
NN have larger error bars for the first nearest neighbors. It means
that the result is unstable. By comparing the predicted CNs from
two NN, we obtained that the oxidation state of the sample is consis-
tent with that obtained by an independent chemometric approach,
as reported in Table S2.

For the samples with a large fraction of Cu2O, we performed
similar NN-XANES analysis, this time by using our Cu2O NN
model. Table S3 lists samples that are mainly composed of Cu2O.
The first and second Cu–Cu CNs are extracted by our Cu2O NN
model. To validate the results, we present the correlation between
the number of Cu atoms and the first Cu–Cu CNs for Cu2O models
in Fig. 4(b). The results demonstrate a correlation between predicted
CNs from Cu2O NN with the sizes of the cluster. Similar to the
prior example, we used the CuO-trained NN to check the capa-
bility of our method to distinguish between the CuO and Cu2O
motifs. The predicted CNs from CuO NN give much larger error
bars for the first nearest neighbors than those obtained from the
Cu2O NN for the same experimental spectra Table S3. Thus, by
combining the predicted CNs from two NNs, and comparing them
with the known CN values that correspond to the known cluster
sizes, we demonstrated that the oxidation state and structural infor-
mation can be extracted from the spectra for Cu2O-like clusters
(Table S3).

After validating the NNs using experimental spectra for clusters
with the known sizes and structures (dominated by either Cu2O or
CuO clusters, as described above), we applied the NNs to analyze the
spectra for samples of a nominal size of Cu20 and unknown structure
and oxidation state. Our trained NNs were applied to answer the

FIG. 4. The correlations between the number of Cu atoms and true Cu–Cu CNs
for theoretical CuO (a) and Cu2O (b) models built during the NN training. The blue,
green, and red points are shifted horizontally around their actual values (4, 12, and
20) to show the error bars. S1–S7, T1–T7, and Cu20 represent the experimental
samples with CNs extracted by the NNs. The detailed description of samples S1–
S7, T1–T7, and Cu20 is given in Tables S2–S4.

question whether the sample was mainly composed of a CuO-like
or a Cu2O-like phase. In Table S4, we present the first and second
Cu–Cu CNs extracted by our CuO NN and Cu2O NN. To analyze
the results and determine the oxidation states, we correlate the pre-
dicted CNs with the sizes of the cluster and examine the relation
between Cu–Cu CNs and the number of copper atoms in Fig. 4. The
predicted CNs from CuO NN follow the size-dependent trend in
Fig. 4(a). However, the predicted CNs from Cu2O NN show large
error bars when compared with the CuO NN prediction [Fig. 4(b)].
Based on the results for Cu4 and Cu12 clusters, described above
and summarized in Tables S2 and S3, larger error bars were always
obtained when the incorrect NN models were applied. Therefore, by
comparing the predicted CNs and taking into consideration the dif-
ference in the error bars (that were demonstrated to be an important
factor in discriminating between two possible phases of the cop-
per oxides) from CuO NN and Cu2O NN, we conclude that the Cu
clusters containing 20 atoms were dominated by the CuO phase.
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CONCLUSIONS

In summary, a neural network method was utilized to build the
relationship between the XANES spectra and structural parameters
for copper oxide cluster systems. This method enabled the determi-
nation of the average particle size and the oxidation state of metal
clusters during the catalytic reaction by “inverting” their XANES
spectra. Since the metal clusters acted as important catalysts in many
reactions, this method is poised to have many applications. For
instance, for the carbon dioxide and nitrogen oxide related reduction
reaction where the metal cluster acts as catalyst and gets oxidized,62

the NN method can be soon utilized to analyze the structure of these
metal oxide clusters and thus help decipher the reaction mechanism.
At this stage, while our method is an improvement compared to the
previously developed NN-based XANES analysis approach, because
it is applied, for the first time, not to pure metallic clusters but to
the metal oxides, the present NN method still has several important
limitations. For example, it relies on the CNs as descriptors and thus
cannot distinguish isomers with the same CNs. It is also favoring
those speciations where one (CuO, Cu2O, or Cu) phase dominates
and would not be helpful when these phases coexist with similar
fractions during a particular reaction step. We envision that such
recently developed techniques for XANES analysis as MCR-ALS, lin-
ear combination, and principal component analysis will be used in
combination with our approach for accurately obtaining both the
mixing fractions of different types of clusters and structural charac-
teristics of each type. Our method, after the required training and
validation, is also applicable to a wide range of metal oxide cluster
catalysts and for the understanding of structure, composition, and
function relationships in catalysis.

SUPPLEMENTARY MATERIAL

See the supplementary material for additional details on the
XANES calculation, neural network implementation and training,
experiment, and results of speciation analysis of clusters used in this
work.
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Note I. DETAILS OF AB INITIO CALCULATION OF XANES 

Similarly to our previous work [1-3], we use ab initio code FEFF [4] for XANES simulation. The non-

structural parameters for XANES simulations were chosen to ensure the best agreement between the 

simulated spectrum for the bulk of CuO, Cu2O and the corresponding experimental XANES data. FEFF 

version 9.6.4 was used for self-consistent calculation within full multiple scattering (FMS) and muffin-tin 

(MT) approximations. FMS cluster size was chosen at a large value so that the whole cluster was included 

in the FMS calculations. Random phase approximation (RPA) was used to model core-hole and use the 

default value (1.5 Å or 2.0 Å) respectively for Cu2O or CuO MT radius, as well as complex exchange-

correlation Hedin-Lundqvist potential. 

   Cluster models for XANES calculation were constructed by cutting the bulk of copper oxide with 

(100) and (111) planes. The details of the lattice parameters for the bulk of CuO and Cu2O are listed in 

Table S1. Considering the sensitivity of XANES to the interatomic distance, we constructed additional 

structure models by stretching and compressing the models from the original set. The distance between the 
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nearest copper atoms varies from 2.784 and 3.07 Å for CuO. The distance between the nearest copper atom 

varies from 2.879 and 3.182 Å for Cu2O. In addition, we constructed the planar structures with one or two 

layers of (111) planes of CuO and Cu2O. 

  The non-equivalent sites in all cluster models were selected for XANES calculation. After that, we 

obtained the particle-averaged XANES by averaging the site-specific spectra. All theoretical XANES 

spectra were shifted in energy by ΔE to align the energy scale of theoretical calculations with experimental 

data. The value of ΔE for Cu2O is calculated by the alignment of the theoretical XANES for the Cu2O bulk 

with experimental spectra with energy scale ranging from Emin =8981.2 eV to Emax = 9059.3 eV. The value 

of ΔE for CuO is calculated by the alignment of the theoretical XANES for the CuO bulk with experimental 

spectra with energy scale ranging from Emin =8981.5 eV to Emax = 9059.3 eV.  

Note II. DETAILS OF NEURAL NETWORK IMPLEMENTATION AND TRAINING  

Similarly to our previous works [3], we use Wolfram Mathematica 11.3. to construct and train the neural 

network (NN). Our NN takes discretized XANES spectrum as input and output a vector that describes 

relevant structural parameters (metal-metal coordination numbers (CNs) for the first two shells (C1, C2)). 

The output layer of our NN contains two nodes and the input layer contains 94 points which are determined 

by the number of points in the discretized XANES spectrum. The number of nodes in the hidden layers are 

optimized to ensure optimal performance on validation set. The structure of Cu2O NN is based on one-

dimensional convolution NN which has one convolution layers and two hidden layers. The convolution 

layer has kernel sizes (64) with 128 channels. The hidden layers have 128 and 64 nodes. The structure of 

CuO NN is also based on one-dimensional convolution NN which has two convolution layers and one 

hidden layer. Two convolution layers have the same kernel sizes (16) with 64 channels. The hidden layer 

has 64 nodes. For each type of the NN, we also add the dropout layer with 0.2 probability after the 

convolution layer to overcome overfitting. For activation function, we use Rectified Linear Unit for 

convolution layers and hyperbolic tangent function for the hidden layer. To build the relation between the 
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XANES and structure parameters, we train NN on theoretical XANES data calculated with FEFF for copper 

oxide particles with different sizes, shapes and different interatomic distances. 

     To produce more XANES data, similarly to our previous work [3] for NN training purpose, we 

constructed artificial dataset by linear combining site-specific theoretical XANES for 25 particles (CuO) 

and 30 particles (Cu2O) of different sizes and shapes. For each of site with known CNs  {𝐶𝐶1,𝐶𝐶2}, we 

calculate the site-specific XANES spectrum by FEFF. Then we select randomly n sites and create 

corresponding average spectrum as µ𝑖𝑖(𝐸𝐸) = ∑ µ𝑗𝑗(𝐸𝐸)/𝑛𝑛𝑛𝑛
𝑗𝑗=1  where 𝜇𝜇𝑗𝑗(𝐸𝐸) are site-specific spectra calculated 

either with FEFF for j-th of the randomly chosen sites. The corresponding average CNs can be obtained as 

{𝐶𝐶1,𝐶𝐶2}𝑖𝑖 = ∑ {𝐶𝐶1,𝐶𝐶2}𝑗𝑗/𝑛𝑛𝑛𝑛
𝑗𝑗=1 . The selected sites can come from several different spectra but with same Cu-

Cu distance R. We chose n=3 for the optimum NN performance. 

    For NN training, we use “ADAM” optimization algorithm with default parameters (𝛽𝛽1 = 0.9 and 

𝛽𝛽2 = 0.999). Batch size was 800 for CuO and 1500 for Cu2O, and the training rounds for NN training 

depends on the training loss and validation loss. Loss function was defined as the L2-norm between output 

and target vectors averaged across the batch. Three neural networks were trained to overcome the bias and 

exhibit the stability of NN. 

    To validate our NN, we used a set of theoretical spectra that were not used for NN training. The 

theoretical spectra are particle-averaged XANES spectra obtained by averaging the site-specific XANES at 

each site of the copper oxide models, which corresponded to the CuO and Cu2O models with different 

shapes and sizes. The models for the validation set were also used for the generation of the training set but 

only site-specific XANES spectra calculated on those models were used in the training set. Results of 

validation for the first Cu-Cu coordination shell are shown in Figure 3. Results of validation for the second 

Cu-Cu coordination shells are shown in Figure S3. The parameters of our NN models including the number 

of nodes, activation function, batch size and number of iterations for training are also optimized according 

to the performance on the validation set. 
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Note III. DETAILS OF GI XANES EXPERIMENT 

Part 1 (describing the experimental details presented in Table S2 and Table S3) 

The data presented in Table S2 and Table S3 were extracted from the data presented in Ref. [6]. In brief, 

the in-situ GI XANES were performed at beamline 12-ID-C of the Advanced Photon Source at the Argonne 

National Laboratory. The experimental setup has been reported previously [5]. There were two kinds of 

support used for the samples, ALD (atomic layer deposition) zirconia (creating zirconia films that were a 

few monolayers thick) and nano-zirconia (~100 nm thick zirconia film composed of zirconia nanoparticles), 

prepared by atomic layer deposition and supersonic cluster beam deposition, respectively. On these supports, 

Cu4 and Cu12 clusters were deposited. The GI XANES experiments were performed under a gas mixture 

containing pure CO2 and H2 in 1:3 ratio, at the Cu K edge (8.987 keV) on a fluorescence detector (Vortex) 

positioned parallel to the sample surface and perpendicular to the incident beam. The spectra of the Cu2O, 

CuO bulk standards were collected at the 12-BM beamline of the Advanced Photon Source in transmission 

mode as reference spectra. 

Part 2 (describing the experimental details presented in Table S4) 

Using the same experimental setup as described in Part 1 above, GI XANES data were collected on ALD-

ZnO and ZrO2-supported Cu20 clusters, in a gas atmosphere containing 20% CO2, 60% H2 and 20% He.  
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IV. SUPPORTING FIGURES AND TABLES 

 

Figure S1. The representation of different Cu2O models to show the sensitivity of Cu-Cu CNs to the size 

and shape of the models. Each model is labeled with first and second Cu-Cu CNs. 

 

Figure S2. The representation of different CuO models to show the sensitivity of Cu-Cu CNs to the size 

and shape of the models. Each model is labeled with first and second Cu-Cu CNs. 
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Figure S3. Validation of NN accuracy with experimental XANES and theoretical particle-averaged 

XANES. Results of NN analysis of XANES data, obtained in FEFF simulation for CuO and Cu2O particles 

with different sizes, are compared with the true Cu-Cu coordination number. 

 

Table S1. The lattice parameters for CuO and Cu2O.  

Lattice Parameters CuO Cu2O 
a 4.288 Å 2.933 Å 
b 4.288 Å 2.933 Å 
c 4.288 Å 5.133 Å 
α 90° 90° 
β 90° 90° 
γ 90° 90° 
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Table S2. First and second shell of Cu-Cu CNs extracted from CuO XANES by CuO NN model. The 

predicted Cu-Cu CNs by Cu2O NN model have much larger error bars for the first nearest neighbor shell. 

The fractions of individual copper components (CuO, Cu2O and Cu) were obtained from the XANES data 

as discussed in greater detail in [6].  

Name Size Support CuO 
(%) 

Cu2O 
(%) 

Cu 
(%) 

Temperature 
(℃) 

1st Cu-Cu 
CNs a 

2nd Cu-Cu 
CNs a 

1st Cu-Cu 
CNs b 

2nd Cu-
Cu CNs b 

S1 Cu12 
ALD 

zirconia 74 0 26 25 1.5(3) 2.9(4) 4.5(12) 0.6(4) 

S2 Cu12 
ALD 

zirconia 73 0 27 75 1.5(2) 3.3(4) 4.2(10) 0.9(1) 

S3 Cu4 
Nano 

zirconia 70 18 12 225 1.4(4) 3.6(7) 4.7(16) 0.9(1) 

S4 Cu4 
Nano 

zirconia 75 6 19 125 1.2(1) 3.3(4) 4.8(18) 1.0(1) 

S5 Cu12 
Nano 

zirconia 73 0 27 225 1.4(2) 3.0(6) 4.8(26) 1.0(3) 

S6 Cu12 
Nano 

zirconia 76 1 24 25 1.3(3) 3.3(4) 4.1(23) 2.1(4) 

S7 Cu12 
Nano 

zirconia 74 0 26 75 1.5(2) 3.4(4) 3.8(19) 2.3(5) 

           
a CNs predicted by CuO NN. b CNs predicted by Cu2O NN. Uncertainties in the last significant digits are given in parentheses. 
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Table S3. First and second shell of Cu-Cu CNs extracted from Cu2O XANES by Cu2O NN model. The 

predicted Cu-Cu CNs by CuO NN model have much larger error bars for the first nearest neighbor shell. 

The fraction of individual copper components (CuO, Cu2O and Cu) was obtained from the XANES data as 

discussed in greater detail in [6].  

Name Size Support CuO 
(%) 

Cu2O 
(%) 

Cu 
(%) 

Temperature 
(℃) 

1st Cu-Cu 
CNs a 

2nd Cu-Cu 
CNs a 

1st Cu-Cu 
CNs b 

2nd Cu-
Cu CNs b 

T1 Cu4 
ALD 

zirconia 19 66 19 225 3.2(1) 0.7(3) 1.9(14) 0.8(7) 

T2 Cu4 
ALD 

zirconia 7 68 25 275 3.0(5) 0.6(4) 2.1(12) 0.5(2) 

T3 Cu4 
ALD 

zirconia 8 68 24 325 3.2(2) 0.7(6) 2.0(12) 0.5(2) 

T4 Cu4 
ALD 

zirconia 10 70 20 325 3.2(4) 0.7(6) 2.0(13) 0.5(2) 

T5 Cu4 
ALD 

zirconia 10 70 20 275 3.0(5) 0.7(6) 2.0(12) 0.5(2) 

T6 Cu4 
ALD 

zirconia 11 67 22 225 3.0(3) 0.6(6) 2.0(12) 0.5(2) 

T7 Cu4 
ALD 

zirconia 17 61 22 175 2.9(6) 0.5(4) 2.0(10) 0.6(3) 

 

a CNs predicted by Cu2O NN. b CNs predicted by CuO NN. Uncertainties in the last significant digits are given in parentheses. 

Table S4. Description of the Cu20 oxide cluster samples and their speciation by NN, showing that they are 

consistent with CuO structure (the results obtained using a Cu2O - trained NN have much larger error bars).  

Name Size Support Reaction 
Condition 

1st Cu-Cu 
CNs a  

2nd Cu-Cu 
CNs a 

1st Cu-Cu 
CNs b 

2nd Cu-Cu 
CNs b 

Cu20_1 Cu20 ZrO2 He 2.1(4) 1.8(3) 6.7(19) 1.1(2) 

Cu20_2 Cu20 ZrO2 
Mixture of 20% 

CO2, 60% H2 
and 20% He 

2.0(4) 2.3(2) 6.0(20) 1.1(2) 

Cu20_3 Cu20 ZnO He 2.4(2) 2.7(5) 5.4(22) 0.6(6) 

Cu20_4 Cu20 ZnO 
Mixture of 20% 

CO2, 60% H2 
and 20% He 

2.5(5) 1.9(3) 5.8(31) 0.7(5) 

 

a CNs predicted by CuO NN. b CNs predicted by Cu2O NN. Uncertainties in the last significant digits are given in parentheses. 
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