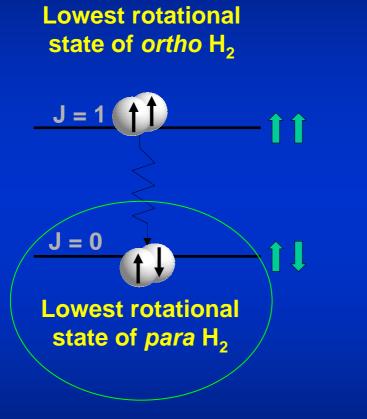
Results and interprétation

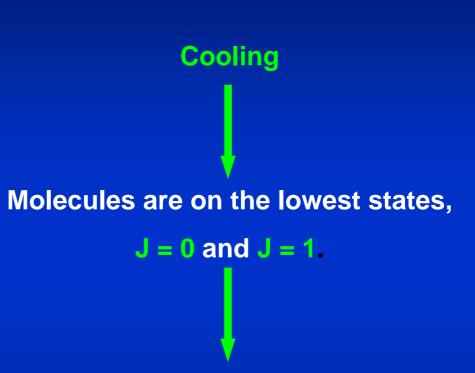
 $\gamma_v = 14.28(13) \times 10^{-3} \text{ s}^{-1} \text{ Torr}^{-1}$ $\gamma_{\text{total}} = \mathbf{x}_s \gamma_s + \mathbf{x}_v \gamma_v \qquad \gamma_{\text{glass}} = 25.8 \times 10^{-3} \text{ s}^{-1}$

 $\gamma_{gold} = 64.8 \times 10^{-3} \text{ s}^{-1}$

$$\gamma = 2 |V_{\alpha\alpha},|^2 \frac{\Gamma_{\alpha\alpha'}}{\Gamma_{\alpha\alpha'}^2 + \omega_{\alpha\alpha'}^2} (W_{\alpha} + W_{\alpha'})$$

Low pressure range ($\Gamma_{\alpha\alpha'} \ll \omega_{\alpha\alpha'}$)

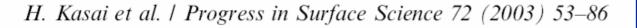

 γ proportional to Γ and pressure

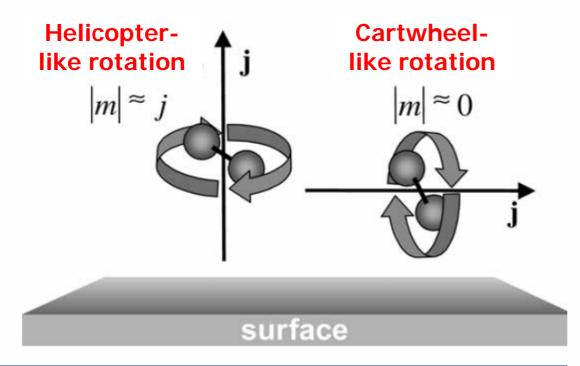

$$\overline{v} \cong 430 \text{ m/s}; \quad \lambda = 1 \text{ mm}$$

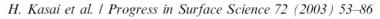
 $\Rightarrow \Gamma_{s} = \frac{\overline{v}}{\lambda} = 4.3 \times 10^{5} \text{ s}^{-1}$
 $\Gamma_{s} << \Gamma_{v} \ (= 1.4 \times 10^{8} \text{ s}^{-1} \text{ Torr}^{-1})$

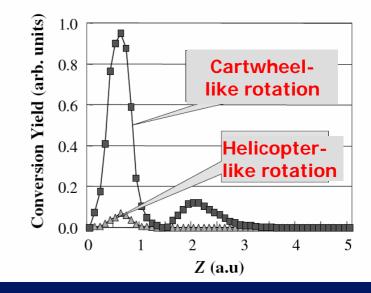
Conclusion

Quantum relaxation is a marginal process on surface \Rightarrow Direct mechanisms

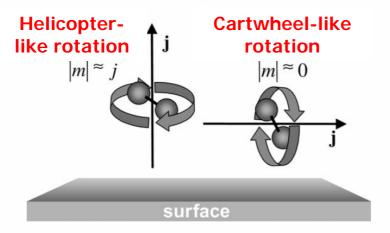

Conversion of H₂ on a surface

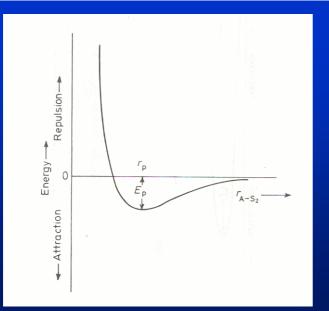


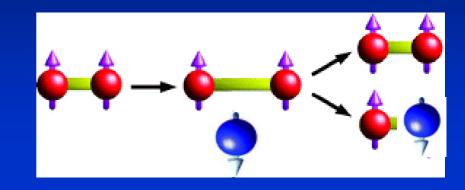


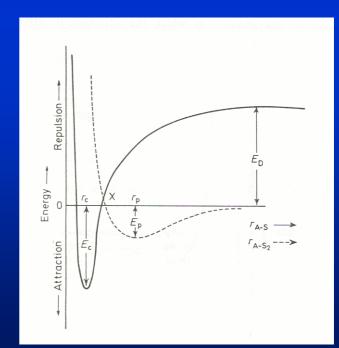

Technique allowing an acceleration of the conversion of ortho H_2 in para H_2 = catalytic surface

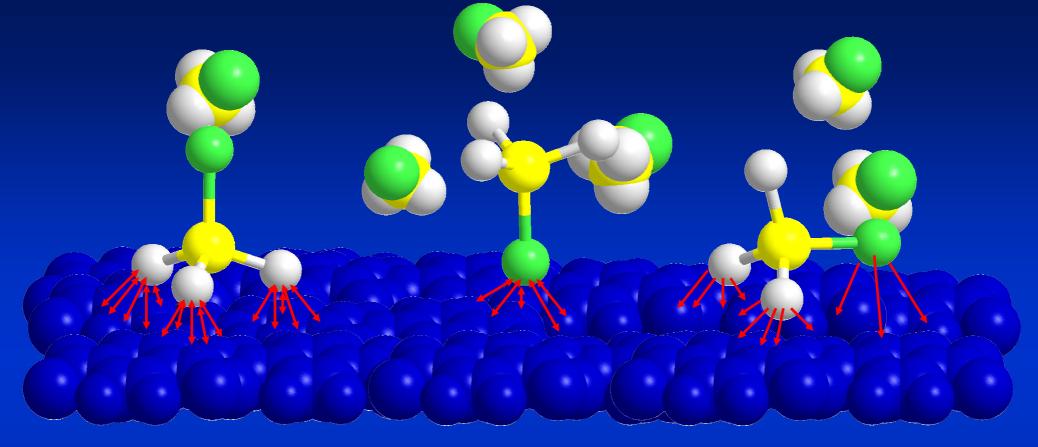
Orientation of H₂ with respect to the surface






Physisorption


H. Kasai et al. | Progress in Surface Science 72 (2003) 53-86



Chemisorption

 - contact interaction if H atoms interact with surface (protons are exposed to an inhomogeneous magnetic field inducing a dephasing in the precession of the nuclear spins)

- internal modification of the whole electronic cloud if the F atom interacts.
- immobilization $\rightarrow V_{surf} \approx \hbar \omega_{op}$

Universality of the QRM with new molecules

Acetylene C_2H_2 Water H_2O Molecules of higher symmetry NH₂. C

> Rovibrational spectra Line profile Magnetic spin rotation interaction

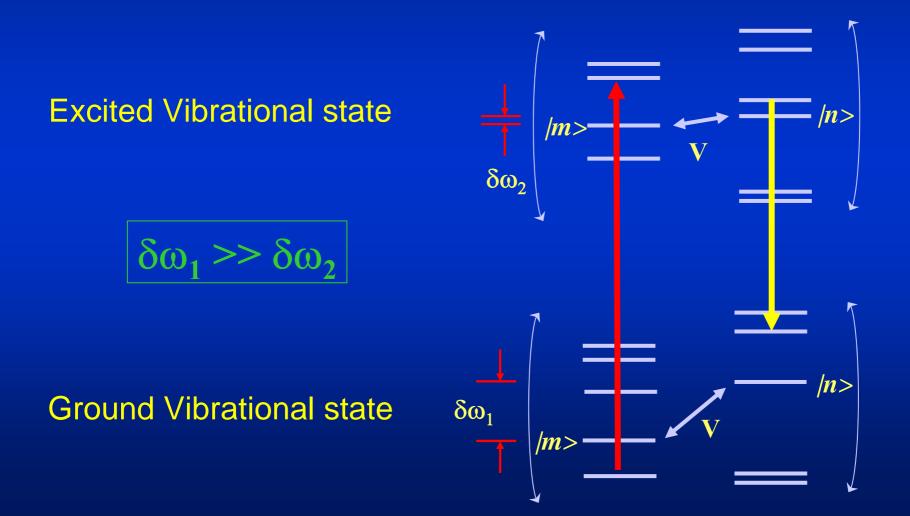
> > Information needed !

How to improve the enrichment?

Enrichment is only possible if experimental conditions ensure isomer lifetimes exceeding the characteristic duration of enrichment.

Light-Induced Drift

A vibrational and velocity-selective excitation produces a change of collisional cross section of one isomer species


Selective adsorption

Isomer species flow differently through a chromatography column filled by paramagnetic granules (activated carbon)

simplicity, versatility, adaptability

Direct enrichment (C₂H₂, NH₃)

How to improve the detection ?

Monitoring the absorption of one isomer with CO₂ lasers

Constraints:

- finding a coincidence between the spectrum of the studied molecule and the spectrum of the CO₂ source.
- the sample pressure has to be stable as the measurement takes often several minutes

Recording 1 cm⁻¹ of the spectrum in the 1.5 μ m region

Most of the molecules have transitions in this domain

Cavity Enhanced Absorption Spectroscopy technique

- weak absorption (combination bands)
- measurements at low pressure

Conclusion

Provide measurements of intramolecular magnetic interactions and collisional relaxation properties in molecules having atoms in equivalent positions.

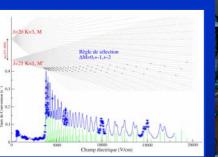
Astrophysics : In gas phase, no conversion (QRM)

On surfaces, faster conversion ?

Need of experiments in order to derived models of molecular formation in the ISM

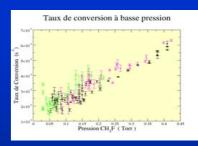
Biology:

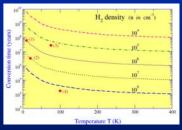
Enrichment obtained for the water molecule in gas, liquid and solid phases (Tickonov et Volkov Science 2002). (contradiction with other observations)


Selective reactivity in biological environment ? (*Spin dependence adsorption of water molecules*, Poteckin, Khusainova, Biophysical Chemistry <u>118</u>, 2005)

Patrice Cacciani

Mohamed Khelkhal





Julien Lecointre

Marcela Tudorie

Thanks to Petr,

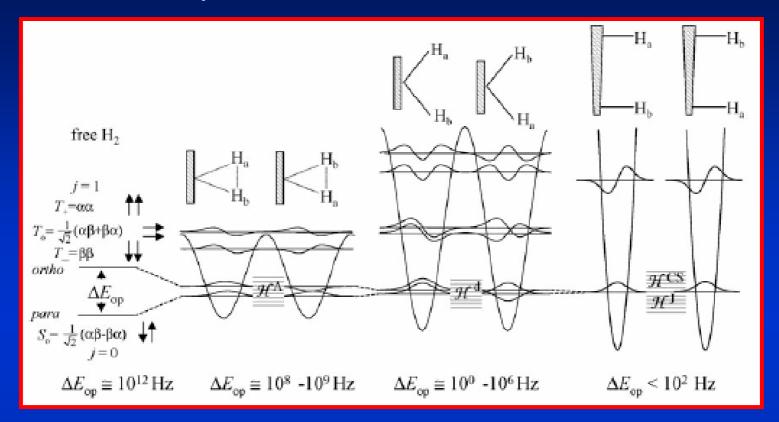
The Academy of Sciences

And all of you for your attention

Selection rules for ortho – para couplings in C_{3v} molecules

Spin-spin interaction $\Delta J \leq 2, \ \Delta k \leq 2$

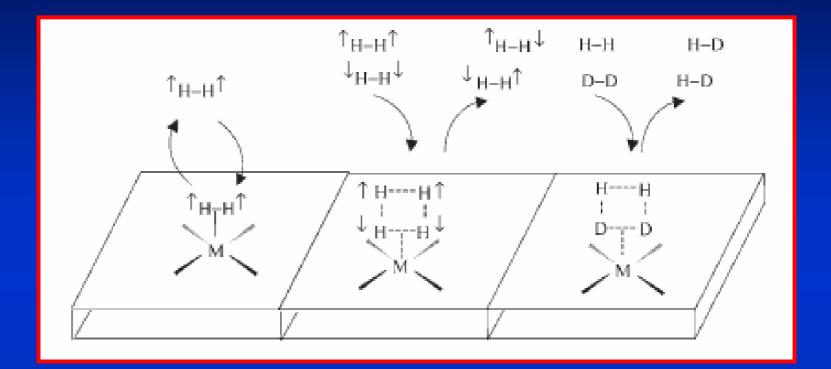
Spin-rotation interaction $\Delta J \leq 1, \ \Delta k \leq 2$


Characteristics of ¹³CH₃F

Ortho – para $(J_0, K_0) - (J_p, K_p)$ pairs	ħω (MHz)	W (10 ⁻⁵)	interaction
(9,3) – (11,1)	130	3.8922	spin-spin
(20,3) – (21,1)	350	1.0263	spin-spin and spin-rotation

Characteristics of ¹²CH₃F

Ortho – para $(J_0, K_0) - (J_p, K_p)$ pairs	ħመ (MHz)	W (10 ⁻⁵)	interaction
(50,6) – (51,4)	41	0.0002	spin-spin and spin-rotation
(27,6) – (28,5)	1189	0.2839	spin-spin and spin-rotation
(17,6) – (15,7)	1746	1.8301	spin-spin
(10, 0) – (9,2)	8591	8.8187	spin-spin and spin-rotation


H.-H. Limbach et al., ChemPhysChem 2006, 7, 551 – 554

The quantum rotation is not immediately quenched but converted into a "rotational tunneling splitting"

An efficient catalyst of the magnetic spin conversion not only provides a suitable magnetic interaction, but also reduces the value of ΔE_{op} of the dihydrogen pair by elongation of the HH bond length.

H.-H. Limbach et al., ChemPhysChem 2006, 7, 551 – 554

The magnetic spin conversion is suppressed (left) because of a large value of ΔE_{op} associated with short H···H distances in a dihydrogen complex.

At least two dihydrogen molecules are necessary for the chemical spin conversion that is associated with the corresponding isotope scrambling reaction.