

Nuclear Spin Conversion in Gas Phase Recent developments

J. Cosléou

P. Cacciani, M. Khelkhal

Laboratoire de Physique des Lasers, Atomes et Molécules UMR CNRS 8523 – CERLA FR 2416 Université des Sciences et Technologies de Lille

Prague, March 10th 2007

Nuclear spin

Electron spin : fine structure of hydrogen atom and Stern-Gerlach experiment

G.E. Uhlenbeck and S. Goudsmit, Naturwissenschaften 47 (1925) 953.

Unexplained experimental data for H₂ molecule :

Intensity alternation

Anormal Rotational Specific Heat

By similarity with the interpretation of the Helium spectrum involving electron spin, Dennison proposed an interpretation of the abnormal specific heat of H₂ introducing the proton nuclear spin.

David M. Dennison Am. J. Phys. 42, 1055 (1974)

Nuclear spin isomers

Normal hydrogen H₂ is a mixture of two different types of molecules that have different thermal and optical properties

All molecules having identical non zero nuclear spin atoms (H, F ...) in symmetrical positions exist as nuclear spin isomers and are distinguished with the total nuclear spin of the equivalent atoms.

Role of equivalent atoms

Pauli's Principle : the total wavefunction has to be symmetric or antisymmetric with respect to permutation of identical atoms

The particle type determines the properties of the total wavefunction

Fermi-Dirac

 $(12)\psi = -\psi$ (12) $\psi = \psi$ fermions (*I* half-integer) bosons (*I* integer) ¹/₂ : H, ¹³C, ¹⁵N, F **0** : ¹²**C**, ^{16/18}**O 1** : D, ¹⁴N 3/2 : CI, Br, Na 5/2 : I, ¹⁷O, AI 2: n/a : ⁷³Ge, ⁸³Kr 6:V

Bose-Einstein

Molecular symmetry group $(12) \Psi^{tot} = \pm \Psi^{tot}$ $\Psi^{tot} = \Psi^{e} \Psi^{vib} \Psi^{rot} \Psi^{ns} = \Psi^{evr} \Psi^{ns}$

Molecular symmetry group is used to label the energy levels and Pauli's principle allows only certain combinations.

The total nuclear spin I is connected to the rotational quantum numbers

Each spin isomer can be identified by its own rotation-vibration spectrum

Spin conversion definition

Spin conversion is a <u>dynamical property</u> of molecules embedded in an environnement and results in the possible change of the total nuclear spin of the molecule (ortho \leftrightarrow para).

The simplest situation is a gas sample where a molecule undergoes collisions

Such a hidden characteristic is quite robust versus collisions and fields : isomers can be regarded as different species.

Physical Origin of Conversion

Flipping the spin requires a gradient of magnetic field strong enough at the molecular scale

External magnetic field

Collisions with paramagnetic molecules (O₂) H₂, H₂O in rare gas matrices, CH₃F

Magnetic field inside the molecule

Interaction between spins (spin-spin) - Rotation of charges (spin-rotation) CH₃F, H₂CO, C₂H₄

Spin-spin

Spin-rotation

If the existence of spin isomers is accepted, the <u>dynamics of conversion</u> of one isomer to the other is not well understood.

Our PROJECT

Provide experimental observations leading to a quantitative explanation of the mechanism of nuclear spin conversion.

(validation and universality of the Quantum Relaxation Model)

Extract informations about physical properties of molecules and their behavior in their environment.

(collisional efficiency ; surface effect)

Make some predictions through theoretical model and spectroscopic data to evaluate spin conversion rates

(ISM)

« Observation of isomerization rates would require the preparation of a non equilibrium isomeric mixture »

Curl et al J. Chem. Phys. 46(8), 3220 (1967)

One must be able to create a disequilibrium between the populations of the different spin configurations to measure the kinetics of the recovering of the Bolztmann distribution.

Difficulty : identical physical and chemical properties

No general process for enrichment

 H_2 (δω # 170.6 K) : cooling below 20.4 K (boiling temperature)

Selective adsorption : H₂O

Reaction from enriched reactants : H₃+

Selective UV laser photodissociation : H₂CO

Rapid cooling (in matrices) : CH₄ (para - H₂) ; H₂O (Ar)

Light-induced drift Clean environment – gas phase

Light-Induced Drift

Vibrational and velocity-selective excitation ...

... produces a change of collisional cross section of one isomer species

R(4,K) absorption lines of of the v_3 band of ${}^{13}CH_3F$

> P(32) line of CO₂ laser (9.6 μm band)

Record of the enrichment phase followed by the conversion phase in ¹³CH₃F

"Quantum Relaxation" model

For nonlinear molecules with identical nuclei an important pathway leading to equilibration of nuclear spin statistics isomers is provided by wavefunction mixing induced by the spin-rotation interaction and in some cases the spin-spin interaction.

[...] The spin-rotation mixing may be very important if there is an accidental near degeneracy of the right sort. Then most of the isomerization « funnels » through the near – degenerate levels.

R. F Curl et al J. Chem. Phys. 46(8), 3220 (1967)

Energy levels and transitions for a molecule having <u>no</u> equivalent atoms

Energy levels and transitions for a molecule existing as two isomers

Spin-spin interaction $\Delta J \leq 2, \ \Delta K \leq 2$

Spin-rotation interaction $\Delta J \leq 1, \ \Delta K \leq 2$

"Quantum Relaxation" model

Ingredients:

- Energetically close ortho and para levels
- Intramolecular interaction coupling these levels
- Collisional relaxation (Maxwell Boltzmann distribution)

Verification of the model

Pressure dependence of the conversion rate

$$\gamma = 2 \left[V_{\alpha\alpha}, \right]^{2} \underbrace{\Gamma_{\alpha\alpha'}}_{P_{\alpha\alpha'}} (W_{\alpha} + W_{\alpha'}) \underbrace{\Gamma_{\alpha\alpha'}^{2} + \omega_{\alpha\alpha'}^{2}}_{P_{\alpha\alpha'}} (W_{\alpha'} + W_{\alpha'}) \underbrace{\Gamma_{\alpha\alpha'}^{2} + \omega_{\alpha\alpha'}^{2} + \omega_{\alpha\alpha'}^{2$$

Low

Nuclear spin conversion in ethylene H₂C=CH₂

$H_2^{13}C=CH_2$ $\gamma/P = 5 \ 10^{-4} \ s^{-1}/torr$

Chem. Phys. Lett. 322, 424 (2000)

 $H_2C=CH_2$ $\gamma/P = 5.5 \ 10^{-4} \ s^{-1}/torr$

Science. 310, 1938 (2005)

Verification of the model

Temperature dependence of the conversion rate

$$\gamma = 2 |\mathbf{V}_{\alpha\alpha'}|^2 - \frac{\Gamma_{\alpha\alpha'}}{\Gamma_{\alpha\alpha'}^2 + \omega_{\alpha\alpha'}^2} (\mathbf{W}_{\alpha} + \mathbf{W}_{\alpha'})$$

Verification of the model

Level crossing resonance

$$\gamma = 2 |\mathbf{V}_{\alpha\alpha},|^2 \underline{\Gamma_{\alpha\alpha'}}_{\Gamma_{\alpha\alpha}}, (\mathbf{W}_{\alpha} + \mathbf{W}_{\alpha'})$$
$$\Gamma_{\alpha\alpha}^2, + \omega_{\alpha\alpha'}^2,$$

 $F = 1017 V.cm^{-1}$

Time sequence with and without Stark field $T_{tot}=T_0 + T_{St}$ $\gamma_{exp} T_{tot} = \gamma_0 T_0 + \gamma_{St} T_{St}$ Enrichment probe during T_0 (field off)

P. Cacciani, J. Cosléou, F. Herlemont, M. Khelkhal & J. Lecointre, Phys. Rev. A, 69, 032704 (2004)

Magnetic interactions

	ntera	ction s	spin – spir	ו	C. Puzzarini J. Cosléou, P. Cacciani,			
		Ab init	<i>io</i> experimental		F. Herlemont & M. Khelkhal, Chem. Phys. Lett. 401 357-362 (2005)			
¹³ CH ₃ F	T ₂₂	69.2	67.9	3 (25)				
Interaction spin – rotation								
CASSCF, ACES2					Ab initio	experimental		
			$^{12}\text{CH}_3\text{F}$			Klemperer (1971)		
			$C(^{19}F)$	$C_{xx} = C_{yy}$	2.07	4.0 (19)		
$C_{\perp} = (C_{xx} + C_{yy})/2$ $\Delta C_{\perp} = (C_{xx} - C_{yy})/2$				C _{zz}	- 52.85	-51.1 (13)		
			$C(H_1)$	C_{\perp}	15.92	14.66 (70)		
				C _{zz}	0.67	0.8 (15)		
			¹³ CH ₃ F			This work		
		C (H ₁)	$\Delta \mathbf{C}_{\perp}$	- 1.88	1.995 (10)			

Consequences for a molecule of C_{3v} symmetry

- N being isotrope in the perpendicular plane $(N_{xx} = N_{yy})$, the transverse anisotropy is entirely of electronic origin : $\Delta C_{\perp} = \Delta E_{\perp}$.
- Non-diagonal components of the spin-rotation tensor are entirely of nuclear origin et appear unscreened by electrons : $C_{\alpha z} = N_{\alpha z}$ ($E_{\alpha z} = 0$) $\alpha = x,y$

Specific selection rules for spin-rotation interaction

• $\Delta J \le 1$, $\Delta k = 2$: coupling term proportional to $|\Delta C_{\perp}|^2$ Exemple: ${}^{13}CH_3F$: (J,k) = (21,1) - (20,3)

• $\Delta J \le 1$, $\Delta k = 1$: coupling term proportional to $|C_{\alpha z}|^2$ Exemple: ${}^{12}CH_3F$: (J,k) = (28,5) - (27,6)

CH₃F is a molecule for which it is possible to derive the complete spin-rotation tensor

(E. Ilisca and K. Bahloul Phys. Rev. <u>A57</u>, 4296 (1998))

Relaxation rates of coherence Γ

Coherence : created by an *interaction* **and broken by** *collisions*

b magnetic Int. a Pressure dependence of the nuclear spin conversion rate

Relaxation rates of coherence Γ

Analogy with collisional broadening of molecular transitions

Pressure dependence of the nuclear spin conversion rate

Pressure broadening

Despite the final measurements are very different, the treatment of the relaxation developed for the line shape can be transferred to the nuclear spin conversion rate.

Relaxation rates of coherence Γ

The relaxation parameter Γ , presented as a phenomenological parameter by Chapovsky, can be efficiently calculated with the help of models developed for collisional broadening of molecular transitions.

Parameter	Fitted Value	Calculated value		
Γ _{9,3/11,1}	1.55 10 ⁸ s ⁻¹ .Torr ⁻¹	1.59 10 ⁸ s ⁻¹ .Torr ⁻¹		
Γ _{20,3/21,1}	1.34 10 ⁸ s ⁻¹ .Torr ⁻¹	1.21 10 ⁸ s ⁻¹ .Torr ⁻¹		
Cacciani, J. Cosléou, F.				
Mol. Struct., <u>780-781</u> ,	Within the quantum relaxation model	Collisional inelastic cross-sections		

P. He C.

1st pair: matching of experimental and calculated positions of maxima 2nd pair : disagreement !

Rotational dependence of the dipole moment

 $\mu = \mu_0 + \mu_J J (J+1) + \mu_K K^2$

 μ_{J} (exp) = 2.72 (1.71) 10⁻⁵ D (figures in parentheses = 3 times the s.d.)

> $\mu_{\rm J}$ (th) = 1.492 10⁻⁵ D $\mu_{\rm K}$ (th) = - 3.695 10⁻⁵ D

J. Cosléou, P. Cacciani, F. Herlemont, M. Khelkhal, J. Lecointre & P. Pracna, Phys. Chem. Chem. Phys., <u>6</u>, 352 – 357 (2004)

Application to astrophyscics

Ortho/para ratio (OPR) can be measured from observation of interstellar medium or comets. It allows to derive a spin temperature T_{spin}

J. Crovisier, Faraday Discuss., 109, 437 (1998)

Molecular formation deduced from T_{spin}

- Prestellar clouds (L723,...): T_{spin}~10 K of H₂CO close to T_{kinetic} indicates the formation of molecules or the thermal equilibration on <u>cold grains</u>
- Others cases (L1498, ...) : an OPR = 3:1 whereas T_{kinetic} ~10 K indicates a formation at high temperature before it cooled down

(Dickens, Astrophys. J. 1999)

- For most comets (various distances from the Sun, different origins), the measured *OPR* for NH_3 , H_2O et CH_4 correspond <u>always</u> to a spin temperature of about 30 K : no re-equilibration
- In the ice, these molecules could have maintained a memory of their formation temperature in the protosolar nebulae
- « ..., we conclude that the Sun was born in a warm molecular cloud near 30 K, not in a cold dark cloud near 10 K, as is usually assumed. » Kawakita et al, Astrophysical Journal 2005

A test of the hypothesis of forbidden conversion in gas phase

Nuclear spin conversion of formaldehyde in star forming regions induced by non reactive collisions using "quantum relaxation model"

In collaboration with C. PUZZARINI (Bologna), S. MARET and C. KAHANE (Grenoble)

Energy differences

Identification of the most important ortho-para pairs

Spin-rotation interaction V_{op}

non diagonal Terms of the tenso never compared to experiment Ab-initio Calculation of the spin-rotation tensor (method CCSD(T), ACES2 program)

Calculation of wavefunctions (asymmetric top) and interaction terms

Decoherence induced by collisions with H₂

Value estimated from the broadening of spectral lines Γ = 5 10⁷ s⁻¹ Torr⁻¹

Dipole-quadrupole interaction between H₂CO and H₂ Temperature dependence

4 environments

- Prestellar core (T = 5-10 K, $n(H_2) = 10^6 \text{ cm}^{-3}$)
- Protoplanetary disk (30 K, 10⁷ cm⁻³)
- Photodissociation region Orion (75 K, 2×10⁵ cm⁻³)
- Protostar (100 K, 3×10⁸ cm⁻³)

Spin conversion characteristic times are much longer than H_2CO lifetime (~ 10000 years).

Potential sources of nuclear spin conversion :

- proton exchange with interstellar H⁺
- exchange of protons attached to C and O atoms within H₂COH⁺ (protonation of H₂CO by H₃⁺)
- adsorption-desorption on grains.

ISM → low pressure range

PRESSURE DEPENDENCE OF THE CONVERSION RATE

Eur. Phys. J. D <u>12</u>, 297 (2000)

H₂CO : observation of an increase of γ at low pressure
(C. Bechtel, E. Elias, B.F. Schramm, J. Mol. Struct., <u>741</u>, 97 (2005))

Pressure reduced to 30 mTorr ; 3 cells of different S/V ratio

P > 200 mTorr : aligned points

P < 200 mTorr : acceleration of the conversion

With linear dependence at high pressure substracted.

Volume γ_g and non magnetic surface γ_s contributionsNumber of collisionsBinary collisionsSurface collisions

 $N_s + N_g$

 $X_s =$

 $x_g = 1 - x_s$

Conversion rate at lower pressure

$$p_0$$
 defined by $N_g = N_s$

$$p_0 = \frac{kT}{2\sqrt{2}\sigma} \times \frac{S}{V}$$

Cell type	Cross section (A^2)	p₀ (mTorr)	γ_g (s ⁻¹ /Torr)	γ _s (s ⁻¹)
Cylindrical cells 20 cm	4541,53 <i>[3</i>]	0,31	0,01384(11)	0,30(3)
Cylindrical cells 20 cm	44 <i>[4</i>]	31,98	0,01453(14)	0,0052(2)
Cylindrical cells 50 cm	4541,53 <i>[3</i>]	0,4	0,01469(13)	0,135(8)
Stark cells	4541,53 <i>[3</i>]	0,45	0,01481(22)	0,26(4)
All data	4541,53 [3]	0,4	0,01399(8)	0,151(8)