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Abstract 

A simple steepest-descent adaptation process of neural networks with feedback 
connections (i.e. with oriented cycles) is described. The method is illustrated with an applica- 
tion of this type of neural network to the prediction of 13C NMR chemical shifts in a series 
of monosubstituted benzenes. 

INTRODUCTION 

A paradigm of neural networks [l-4] has come to play an important role 
in chemistry as a computing tool for the classification of chemical objects 
and the prediction of their properties. An excellent review of applications 
and the meaning of neural networks in chemistry and related fields of 
research has recently been published by Zupan and Gasteiger [3], in which 
an extensive list of references can be found. Almost all applications of 
neural networks in chemistry are performed by the so-called feed-forward 
networks with a back-propagation method [4] for the adaptation process. 
Graph-theoretically, these networks may be considered as connected 
oriented graphs without oriented cycles. The condition of acyclicity of 
networks is very important for the simple recurrent evaluation of neuron 
activities and partial derivatives of the objective function to be minimized. 
Removing this condition of acyclicity leads to serious numerical problems. 
In particular, the neuron activities cannot be evaluated recurrently: they 
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have to be determined by a string of coupled non-linear equations that may 
be solved only iteratively (providing they have a common solution - a fixed 
point). Fortunately, the partial derivatives are still determined by a system 
of linear equations. The main difference between their evaluation in 
acyclic and cyclic networks is that in the former case these equations are 
in a form allowing their recurrent solution, whereas in the latter the 
equations can be solved by a standard method of linear algebra. 

The problem of inclusion feedback connections to layered neural 
networks has been studied by many authors [5-71. All these approaches are 
usually based either on a consideration of neural networks as dynamic 
systems determined by a system of coupled differential equations with 
relatively complicated structure and interpretation, or on the definition of 
neural networks of different classes that are attached to the original one. 
The purpose of this paper is to demonstrate a simple method of adapting 
neural networks to the possibility that they may contain, in general, 
oriented cycles. It is shown that this problem may be solved in a way closely 
related to the standard adaptation process used in feed-forward (i.e. acyclic) 
neural networks - the steepest-descent adaptation process. The method is 
illustrated with two examples. The first example corresponds to a standard 
problem: how to use neural networks as a classifier of O,l-vectors for 
symmetry. The second example might be of interest for chemical applica- 
tions of neural networks: the neural networks with cycles are used as a 
predictor of 13C NMR chemical shifts of a series of monosubstituted 
benzenes. 

BASIC CONCEPTS 

Here, we present only the basic concept of neural networks - the details 
may be found in the literature [l-4]. Formally, a neural network is deter- 
mined [8-g] as an oriented connected graph G = (V,E) (see Fig. 1) where 
v = (v1,v2,..., vN} is a non-empty set composed of N vertices - neurons. 
A set E = {e1,e2,..., eM) is composed of M edges - connections. Each 
connection ee E is interpreted as an ordered pair of neurons from V; 
e = [v,v’]. We say that this connection is outgoing from the vertex v and 
incoming to the vertex v’. The set V of neurons is divided into three disjoint 
subsets (see Fig. 1) 

v = v,vv,vve (1) 

where V, is composed of Ni input neurons that are incident only with 
outgoing connections, V, is composed of NH hidden neurons that are 
incident at least with one incoming and one outgoing connection, and Ve 
is composed of N, output neurons that are incident at least with one 
incoming connection. In our forthcoming considerations we shall always 
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OUTFIJT NEURONS 

HIDDEN NEURONS 

INPUT NEURONS 

Fig. 1. An example of a neural network determined as a connected and oriented graph. This 
neural network is composed of eleven neurons: neurons labelled l-3 are input neurons; 4-8 
are hidden neurons; 9-11 are output neurons; it also contains an oriented cycle composed of 
neurons labelled 5, 8 and 11. 

assume that the subsets V, and V, are non-empty, i.e. neural networks must 
contain at least one input and one output neuron. 

Neurons and connections of neural networks are evaluated by real 
numbers (see Fig. 2). We assign to each hidden and/or output neuron vi a 
threshold coefficient 9i and to each connection e = [vi,vj] a weight coeffi- 
cient Oji. Moreover, we assign to each neuron vi an activity xi. We postulate 
that activities of input neurons are constant whereas the activities of other 
neurons are determined by 

xi = f(b) (i = 1,2,. . . , Iv) 

~~ = C OijXj + 9i 

j 

(24 

@b) 

where the summation index j runs over all neurons that are adjacent with 
the neuron vi by connections that are incoming to Vi and outgoing from Vj. 

The transfer function f(4) is a positive monotonically increasing function 
that fulfills the asymptotic conditions f(r) --) B as 5 --t co and f(5) --, A as 
5 + - co, where A -c B. For instance, these requirements are simply met if 
the transfer function is 

f(S)=B+Aexp(-5) 
1 + exd- 0 

(34 

4 &ji s; 
i* l ] 

xi xi 

Fig. 2. A connection e = [v,,vj] is evaluated by the weight coefficient oji, and its vertices vi 
and v, are simultaneously evaluated by threshold coefficients Si and 9, and activities x, and xj. 



with the first derivative determined by 

f,(r) = [ - A + f(O1 [B - f(t)1 
B-A 

This function maps the set R of all real numbers onto an open interval 
(A,B); f: R! + (A$). Most frequently, the transfer function is applied either 
for A = 0, I3 = 1 or for A = - 1, B = 1. The first case corresponds to a 
classical sigmoidal function, which maps the set IR onto an open interval 
(O,l), whereas the second choice corresponds to an analog of a hyperbolic 
tangent function mapping R onto the open interval (- 1,l). 

For neural networks without oriented cycles it is easy to show [lo] that 
neurons may be indexed in such a way that vertex vi is incident with the 
incoming (outgoing) connections with initial (terminal) neurons indexed 
by j < i ( j > i ). This means that input (output) neurons should be indexed 
by the lowest (greatest) indices of (1,2, . . . , IV), whereas hidden neurons are 
indexed by intermediate indices that are greater (smaller) than those used 
for the indexing of input (output) neurons. According to this simple graph- 
theoretical property of acyclic neural networks, the system of equations 
(eqns. (2a) and (2b)) for activities may be solved recurrently; an activity xi 
is then determined by the previous activities x1, x2, . . . , xi _ 1. First we cal- 
culate all activities of neurons that are juxtaposed to the input neurons 
(their activities are kept fixed during the whole calculation). In the next 
step we calculate the activities of neurons that are juxtaposed to the 
neurons of activities calculated in the previous step. This process is recur- 
rently repeated until all activities are calculated. 

U~ortunately, the above recurrent method for calculation of activities 
cannot be applied to neural networks containing cycles. Here, eqns. (2a) 
and (2b) represent a string of coupled non-linear equations and the 
activities of hidden and output neurons are obtained only by their iterative 
solution. This is the main obstacle to a broader application of neural 
networks with cycles: their activities are not determined in such an easy 
way as the activities of neural networks without cycles. 

All activities form a state vector x = (x, , x2, . . . , zN). This vector is divided 
into three subvectors composed of input, hidden and output activities 

.r = X~OX,@X() (4) 

The neural network with fixed weight and threshold coefficients may be 
formally considered as a function 

F:RN’-+ (AJf" (5) 

which assigns to an input vector x1 (descriptor) an output vector x0 (classi- 
fier) composed of entries from the open interval (0,l): 

F(%) = x0 (6) 
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The hidden activities are not displayed explicitly here; they only play the 
role of intermediate results. 

An adaptation process of neural network involves looking for such 
threshold and weight coefficients that for a pair of the prescribed input and 
output vectors 3ci and f, give an output vector x0, determined by eqn. (6) 
“closely” related to the prescribed fe. Let us construct an objective 
function 

g, = (xj - ?j) (for jeV,) 
J 

i 0 (for.i#V,) 
(7b) 

where xk and R, are entries of x0 and 2, respectively. A goal of an adaptation 
process is to find the weight and threshold coefficients that will minimize 
the objective function E. 

This minimization may be carried out by a version of the gradient method 
[ll], e.g. by its simplest version called the steepest-descent method [ll]. 
Therefore we have to know all partial derivatives aE/daji and iYE/&Jj of the 
objective function with respect to weight and threshold coefficients respec- 
tively. These partial derivatives may be expressed as 

aE aE axj _ aE 
_z-- 

- - f'<tjlxi 
aWji aXj aWji axj 

and 

aE aEax_aE , 
q = axj 89, - a3cj f (6) (8b) 

Comparing these two equations we arrive at a very important relationship 
between derivatives aE/awji and aE/iSj: 

aE dE -z-x. 
aWji ag ’ 

(9) 

This means that the whole process of calculation of partial derivatives 
aE/Bwj, and aE/iXJj may be reduced to a substantially simpler calculation 
of iTE/&!2j; the two-index derivatives aE/awji are then determined by one- 
index derivatives aE/CBj and corresponding activities Xi. The partial deriva- 
tive aE/axj from the right-hand side of eqn. (8b) is expressed as 

aE ax, 
g=gg+TGd,= (10) 

J J J 

gj + C 2 f ‘(tlJWlj = gj + T $ Olj 

I 1 

where in the third expression the relation shown in eqn. (8b) has been used. 
Introducing this result in eqn. (8b) we arrive at the final equation for partial 
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derivatives aE/iXlj: 

(11) 

where the term gj is determined by eqn. (7b) and the summation runs over 
all neurons that are adjacent to the neuron vj by incoming connections. 

For acyclic neural networks, eqn. (11) immediately provides the well- 
known recurrent relations used in the so-called back-propagation adap- 
tation [4]. The partial derivatives aE/iGj (for j E V,) are simply determined 
by aE/&9j = f’(<j)gj. These derivatives are then used for the evaluation of 
derivatives aE/ZJj, where the index j corresponds to neurons adjacent to 
output neurons by outgoing connections. The same process is recurrently 
repeated until all derivatives aE/aSj assigned to hidden neurons are cal- 
culated. Finally, knowing all partial derivatives aE/a8j, the derivatives 
aE/cbji are simply determined by eqn. (9). It is quite surprising that the 
same relation (eqn. (11)) is satisfied also for a neural network with cycles, 
although now it could not be applied recurrently. The partial derivatives 
aE/a9j are determined by eqn. (11) as a system of linear equations. Its form 
allows their determination iteratively; successive application of the results 
from the left-hand side to its right-hand side gives the partial derivatives 
with the prescribed precision after a finite number of steps. 

The method of calculation of partial derivatives outlined above may be 
simply generalized for more than one pair of input-output vectors x1 and fo 

which form the so-called training set. The objective function is then deter- 
mined by 

E = i E(i) 

i=l 

E(‘) = #j, _ .@)” 

(134 

Wb) 

where x$’ is the output vector of neural networks determined by eqn. (6) as 
a response to an input vector xfi’, and 2g) are required output vectors 
assigned to input vectors x1 @). Partial derivatives of the generalized objec- 
tive function are then equal to the sum of the partial derivatives of EC’) 
evaluated by means of eqns. (9) and (11). 

If we knew the gradient of the objective function, then the adaptation 
process of a neural network could be realized by a minimization of the 
objective function with respect to the threshold and weight coefficients, so 
that output activities x8’, xg’, . . . ,x$ would be closely related to the 
required output activities @, @‘, . . . , @, which are assigned to input 
activities Xf’), ri2’, . . . , xf’). The steepest-descent minimization method is 
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based on the following updating of the threshold and weight coefficients: 

04b) 

where the positive parameter 1 > 0 should be sufficiently small to ensure 
convergence of the adaptation process and simultaneously sufficiently 
large to achieve fast convergence. We have experienced very good com- 
putational efficiency [8,9] if the adaptation process of neural networks is 
carried out by more sophisticated versions of the gradient method [ll], e.g. 
by the method of conjugate gradients or by the method of variable metric. 

Unfortunately the above comment is correct only for a neural network 
without cycles. If the network contains cycles, the adaptation process is a 
much more numerically complex problem because the activities and the 
derivatives of objective functions are not determined recurrently but via 
strings of coupled equations. In particular, the adaptation process is now 
composed of two parts: first, the weight and threshold coefficients are 
updated such that the objective function is monotonically decreasing; 
secondly, each change of these weight and threshold coefficients involves 
also the necessity of updating the activities of hidden and output neurons 
in order to keep activities self-consistent. Both these problems should be 
solved simultaneously; in the (12 + 1)th iterative step of the adaptation 
process, activities, partial derivatives, weight and threshold coefficients 
are recurrently updated on the basis of their values from the previous Kth 
step 

$+I) = f(@‘) (Isa) 

$“’ = 1 c$’ XT’ + $I”’ (15b) 
j 

(k) 
Olj (154 

(154 

(154 

W) 

Wd 
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The last two equations (eqns. (1X) and (15g)) express the fact that the 
neural network is adapted by the steepest-descent method (see eqns. (14a) 
and (14b)). The coefficient 3, in eqns. (1%‘) and (15g) should be so small that 
for each step of the iterative solution the updated values of partial deriva- 
tives and activities belong to tight neighborhoods of their exact values 
(for the current values of weight and threshold coefficients). Equations 
(15a) and (15b) represent a simple iterative solution of activities. Similarly, 
eqns. (15c)-(15e) are a transcription of eqn. (11) in a recurrent form 
applicable to the iterative determination of partial derivatives of the 
objective function. A generalization of these equations for the objective 
function determined by eqns. (13a) and (13b), which corresponds to a 
training set composed of r objects (eqn. (12)), is straightforward. In the 
framework of each iterative step, eqns. (15a)-(15e) are applied separately to 
each object from the training set; then the partial derivatives (aE/aoji)‘k’ 
and (aE/a$j)ck’ are determined as the sum of partial derivatives assigned to 
single objects. 

The objective function E is highly non-linear, so its minimization is a 
non-standard numerical task. Usually, a local minimum is achieved in 
cases where the value of the objective function is much greater than a value 
in the global minimum. It means that it is necessary to perform at least a 
few adaptation processes with randomly generated initial values of thresh- 
old and weight coefficients. Then we select those coefficients that give the 
lowest (positive) value of the minimized objective functions for the forth- 
coming active process of the neural network in which input activities are 
determined by descriptors of objects taken from the so-called testing set. 

The extrapolation outside the training set is another critical point of 
applications of neural networks as a classifier of objects from the testing 
set. It may very often happen that the active process gives results of 
classification with much lower precision than required. Then the adapta- 
tion process of the neural network should be repeated with new randomly 
generated threshold and weight coefficients. New coefficients obtained as a 
result of this adaptation process are again used for the forthcoming active 
process. If the classification of objects thus produced in the active process 
does not satisfy the required precision repeatedly, then it is necessary to 
turn the user’s attention to a topology of the neural network or to descrip- 
tors (input activities) of objects from training and testing sets: the topology 
of the neural network is very probably inadequate for the problem under 
study, or the descriptors do not properly reflect the internal structure of the 
objects. 

AN ILLUSTRATIVE EXAMPLE 

The correctness of the present theory of neural networks with cycles 
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TABLE 1 

Training set of three~imensional (Q-vectors composed of eight pairs of input and output pair 
activity vectors 

Input activity 

0 0 0 0 1 1 1 1 
0 0 1 1 0 0 1 1 
0 1 0 1 0 1 0 1 

Required output activity 

gp $8) $8) $8) $8 8’ $8) 28’ 

0.9 - 0.9 0.9 - 0.9 - 0.9 0.9 - 0.9 0.9 

outlined in the previous section is illustrated and tested in an attempt to 
classify three-dimensional O,l-vectors (x1,x2,xQ) E {0,1}3. If for a vector 
(x, ,x2,x3) its first and third components are equal (i.e. x, = x3), then we call 
this vector symmetric (evaluated as 0.9), and in the opposite case (i.e. 
x, # x3) it is called asymmetric (evaluated as - 0.9). A training set 
composed of all eight possible three-dimensional 0,1-vectors is displayed in 
Table 1. Two different neural networks (see Fig. 3) are used for the clas- 
sification of vectors for symmetry. The constants A and B from the transfer 
function (eqn. (3)) are determined as A = - 1 and B = 1. These networks are 
only different because one of them (labelled (B) in Fig. 3) contains a simple 

6 6 

1 2 3 1 2 3 

(A) (Bl 

Fig. 3. Two different neural networks composed of three input neurons, two hidden neurons, 
and one output neuron. These networks are used for the classification of three-dimensional 
O,l-vectors. The network labelled (B) contains a simple oriented cycle composed of neurons 
labelled 4 and 5. 
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Results of neural network (A) in Fig. 3 

Hidden activity 

0.76 1.00 0.77 1.00 - 0.77 0.77 - 0.77 0.77 
0.76 - 0.77 0.77 - 0.77 1.00 0.77 1.00 0.77 

Output activity 

0.89 - 0.89 0.90 - 0.89 - 0.89 0.90 - 0.89 0.90 

Weight coefficient” 

w 41 = - 4.07 (- 1) w 42 = 0.02 (1) w w = 4.09 (1) 0 61 = 4.09 (1) 
w 52 = 0.02 (1) W ss= -4.07 (-1) W a = 4.40 (1) W 66 = 4.40 (1) 

Threshold coefficient” 

9, = 2.01 (1) 9, = 2.01 (1) S6 = - 3.85 (1) 

E = 0.15 x lO-3 [grad El = 0.23 x lo-* 

“Numbers in parentheses denote the starting values of the coefficients. 

cycle composed of neurons 4 and 5, whereas the other network (labelled (A) 
in Fig. 3) does not contain any cycle. The adaptation process for both 
neural networks has been performed by the steepest-descent method dis- 
cussed in the previous section; the starting values of weight and threshold 
coefficients are listed in Tables 2 and 3 (numbers placed in parentheses). The 
resulting values of hidden activities and the corresponding adapted values 
of weight and threshold coefficients are listed in Tables 2 and 3. We see that 
for both neural networks the classification of vectors achieved is the same 
as the required classification. The adaptation process used was accelerated 
by the so-called momentum method; the updating equations (eqns. (15f) and 
(15g)) were changed by 

+ aA&’ 
11 (164 

Wb) 

where the terms A$) and AS?’ are the changes in weight and threshold 
coefficients, respectively, in the previous adaptation step. The parameter o! 
usually ranges between 0.5 and 0.9. The starting value of the steepest- 
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TABLE 3 

Results of neural network (B) in Fig. 3 

Hidden activity 

xp xg’ 

0.66 1.00 0.67 1.00 - 0.85 0.67 - 0.84 0.68 
0.66 - 0.85 0.67 - 0.84 1.00 0.67 1.00 0.68 

Output activity 

xb”’ db”’ 

0.89 - 0.89 0.89 - 0.89 - 0.89 0.89 - 0.89 0.90 

Weight coefficient” 

w 11= -3.37 (-1) w 42 = 0.05 (1) w 43 = 3.42 (1) w = 15 - 2.16 (- 1) 
w = 61 3.42 (1) w 52 = 0.05 (1) w 53 = - 3.37 (- 1) w @= -2.16(-l) 

w I = 4.83 (1) w 86 = 4.83 (1) 

Threshold coefficient” 

9, = 3.03 (1) 8, = 3.03 (1) 36 = -3.60 (1) 

E = 0.31 x 1om3 Igrad El = 0.31 x lo-* 

“Numbers in parentheses denote the starting values of the coefficients. 

descent parameter i is unity. If we observe that the value of objective 
function is increasing, then the parameter i is modified by A+ PA, where 
0 < fi < 1. Unfortunately, application of a momentum method needs 
approximately twice as much computer memory, but for computers currently 
in use and equipped with .&lOMB memory, this fact does not involve 
additional complications. 

The adaptation process of our two neural networks, with initial values of 
weight and threshold coefficients listed in Tables 2 and 3, was finished after 
approximately 5000 iterations. Such a huge number of iterations that are 
necessary for the adaptation process may involve some speculation about 
the numerical efficiency of the suggested method. Recently, we have used 
[8,9], for the adaptation process of a neural network without cycles, much 
more powerful optimization methods, in particular the method of con- 
jugated gradients or the method of variable metric. Both these approaches 
reduce the number of iterations, usually to a few hundred. One of their 
basic ideas is that the parameter A (the length of a direction vector) should 
be optimized so that the objective function achieves a minimum value in the 
given direction. The efficiency obtained by the reduction in the number of 
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ortho 

meta 

Fig. 4. A monosubstituted benzene; -X represents a substituent; four different positions on 
the benzene skeleton (ipso, ortho, meta and para) are distinguished. 

iterations is then spoiled by the minimization of 1, which corresponds to a 
few dozen additional optimizations that are almost as numerically demand- 
ing as the simple steepest-descent method. The neural networks with cycles 
could not be adapted by a version of modern gradient methods; simul- 
taneous optimization of weight coefficients and activities in these neural 
networks requires the performance of the adaptation process by the 
simplest gradient method, i.e. the steepest-descent method. The application 
here of either the method of conjugated gradients or the method of variable 
metric may cause very dramatic changes in weight coefficients. Then the 
activities updated using eqns. (12a) and (12b) are not closely related to their 
exact values for current values of weight coefficients, i.e. the principal 
requirement of our adaptation process is not fulfilled. 

APPLICATION TO A PREDICTION OF 13C NMR CHEMICAL SHIFTS IN A SERIES OF 

MONOSUBSTITUTED BENZENES 

The present theory of neural networks with cycles is applied as a clas- 
sifier of monosubstituted benzenes with respect to their 13C NMR chemical 
shifts (four different positions on the benzene skeleton; see Fig. 4). The 
neural networks used are composed of 11 input neurons (their activities are 
equal to descriptors, which determine in a proper way the structure of a 
given substitutent -X) and four output neurons (with activities equal to 
chemical shifts in ipso, ortho, meta and para positions respectively; see 
Fig. 5). The chemical shifts of monosubstituted benzenes belong to a rela- 
tively large interval of real numbers. Therefore they should be compressed 
(see ref. 8) to values from a smaller open interval (A,@ by the following 
non-linear transformation: 

f(x) = B + Ae-‘(‘+B) 
1 + e-a(x+8) (17) 

The coefficients a and /I are adjusted so that x,, < x < xmax is mapped onto 
A + E < y < B - E. A positive number E is determined by E = (23 - A)K for a 
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OUTPUT NEURONS 

INPUT NEURONS 

Fig. 5. Schematic plot of neural networks used for the classification of monosubstitut~ 
benzenes. These networks are composed of 11 input neurons, four output neurons, and 
between four and six hidden neurons. The hidden neurons induce a complete oriented 
subgraph, i.e. each hidden neuron is adjacent to each other hidden neuron by two connec- 
tions of opposite direction. 

small positive K in the range 0 < K -C lf2. An inverse of eqn. (17) is 

1 y-A 
x = f-‘(y) = -In_ _ 

a A+y B 

The coefficients tl and /l are determined by 

P= -~(xmin+xmsxl 

and 

(194 

1 
a= 

4nin + P 

In a 
B-A-E 

The hidden neurons of the used neural networks (see Fig. 5) (4 < NH < 6) 
form a complete subgraph, i.e. each hidden neuron is adjacent to each other 
hidden neuron by two oriented connections of opposite direction. 

The 11 descriptors (x1-xn) assigned to a substituent -X are formed by the 
same method as in our recent publication [9] devoted to the similar problem 
of predicting the yields of nitration in the meta position of monosubstituted 
benzenes. For the present purpose the first-level descriptors do not contain 
entries corresponding to a charge; therefore the substituent groups -X are 
now always without a charge. This means that the first-level descriptors are 
composed of three entries (x,--x3). The second-level descriptors remain 
unchanged and are composed of four original entries (r4-r7). Finally, the 
same descriptors as in the second level are used for the third-level descrip- 
tors (xs-~J. Illustrative examples are given in Fig. 6 and Table 4 (for the 
interpretation of single entries see ref. 9). The results are listed in Table 5 
with experimental values of chemical shifts [12]. The training (testing) set 
is composed of 44 (20) monosubstituted benzenes that are determined (in 
particular, their substituent groups -X) by the 11 non-negative integers 
specified above. The best results are achieved for neural networks 



101 THIRD LEVEL ! 2.1.0.1) 

IN, ,,,, SECOND LEVEL (1.2,3.0) 

IN FIRST LEVEL I1,l.O) 

Fig. 6. An illustrative example of the construction of eleven descriptors (input activities) of 
the substituent -N(CH,)NO (for details see ref. 9). 

composed of six hidden neurons (denoted NN6 in Table 5). In the ipso 
position, chemical shifts tend to have greater values than in the three 
remaining positions, so the adaptation process results in trained neural 
networks, which are able to predict these shifts in satisfactory agreement 
with the corresponding experimental values. Unfortunately, the results 
obtained for the ortho, meta and para positions are not as good as those for 
the ipso position. This is because the values of their chemical shifts fluc- 
tuate near zero; hence the predictions of these chemical shifts represent a 
difficult task for solving by neural networks. A possible way of su~ounting 
this problem is to apply the neural network approach separately to each 
position. Then the problem of great differences in chemical shifts for dif- 
ferent positions does not arise. 

DISCUSSION 

It seems that a generalization of feed-forward neural networks in such a 
way that they may potentially contain feedback connections might be of 
value not only as a theoretical achievement but also as a proper and flexible 
classifier of objects of chemical interest. Unfo~unately, the second conjec- 
ture has not been confirmed by our present calculations. In particular, a 
detailed analysis of neural networks with cycles has failed to give a satis- 

TABLE 4 

Ilustrative examples of descriptors assigned to simple substitutents -X” 

-x Xl 2, x3 2, 4 X6 x7 X8 x9 -%I x11 

-CH, 0 13 0 0 0 0 0 0 0 0 
-NO, 0 10 4 2 0 2 0 0 0 0 
-N(CH,)NO 1 1 0 1 2 3 0 2 1 0 1 

“For details see ref. 9. 
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TABLE 5 

101 

Experimental and predicted *YJ NMR chemical shifts of monosubstituted benzenes R-Ph 

No. -R Chemical shift 

Training set 

Ipso Ortho Meta Para 

-CH, 

-CH,CH, 

-CH(CH,), 

XH,CH=CH, 

m-CH,C=N 

-CH,COOH 

-CH,Si(CH,), 

9 -CH,NH, 

EXP 0.0 0.0 0.0 0.0 
NN4 - 0.6 - 1.6 0.3 - 0.6 

NN5 0.3 0.8 - 0.1 - 1.1 

NN6 0.3 0.8 0.3 -0.1 

EXP 9.2 0.7 -0.1 - 3.1 

NN4 10.1 0.3 0.3 - 2.1 

NN5 9.0 1.2 - 0.1 - 1.6 

NN6 9.4 -0.1 0.3 - 2.6 

EXP 15.6 - 0.5 0.0 - 2.7 

NN4 15.9 - 3.1 0.3 - 3.1 

NN5 15.9 - 1.6 - 0.1 - 2.6 

NN6 15.1 - 0.6 - 0.1 - 2.1 

Exp 20.1 - 2.0 0.0 - 2.5 

NN4 18.1 -4.9 0.3 - 4.3 

NN5 18.6 - 2.6 - 0.1 - 4.3 

NN6 18.6 - 1.6 - 0.1 -3.1 

Exp 15.3 0.0 0.2 - 2.4 

NN4 13.5 - 2.6 0.3 - 3.1 

NN5 14.7 - 1.6 - 0.1 - 3.1 

NN6 14.3 - 0.6 -0.1 - 2.6 

Exp 1.7 0.5 - 0.8 - 0.7 

NN4 2.1 0.8 0.3 - 0.1 

NN5 2.1 1.7 0.3 - 2.1 

NN6 2.1 1.2 - 0.1 0.3 

Exp 4.2 0.4 

NN4 4.5 1.7 

NN5 4.1 1.2 

NN6 4.1 1.7 

- 0.9 

- 1.1 

-0.1 

- 0.6 

Exp 12.0 - 0.1 

NN4 11.6 - 1.1 

NN5 12.7 0.8 

NN6 11.6 - 0.1 

- 4.2 

- 3.1 

- 2.6 

- 3.1 

Exp 
NN4 
NN5 
NN6 

14.9 
13.1 

13.5 

15.1 

1.4 

- 1.1 

- 1.1 

- 1.1 

1.2 

0.3 

0.3 

0.3 

0.0 

0.3 

- 0.1 

- 0.1 

- 0.1 

- 0.1 

-0.1 

- 0.1 

- 1.9 

- 1.1 

- 2.1 

-2.1 
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TABLE 5 (continued) 

No. -R Chemical shift 

Ipso Ortho Meta Para 

10 -CH,NO, 

11 -CH,OH 

12 -CH,OCH, 

13 -CH,SCH, 

14 -CH,F 

15 -CF, 

16 -CH,Cl 

17 

18 

19 

-CH=CH, 

-C&H 

-CkN 

EXP 2.2 
NN4 1.1 
NN5 2.5 
NN6 1.7 

EXP 12.4 
NN4 11.6 
NN5 11.6 
NN6 13.9 

EXP 11.0 
NN4 11.2 
NN5 10.8 
NN6 10.8 

EXP 9.8 
NN4 11.2 
NN5 10.5 
NN6 11.2 

EXP 8.5 
NN4 10.5 
NN5 8.3 
NN6 8.3 

EXP 2.5 
NN4 3.7 
NN5 2.5 
NN6 2.9 

EXP 9.3 
NN4 10.5 
NN5 10.1 
NN6 9.0 

EXP 8.9 
NN4 9.0 
NN5 9.0 
NN6 9.0 

EXP - 6.2 
NN4 - 6.9 
NN5 - 8.4 
NN6 - 10.2 

EXP - 15.7 
NN4 - 8.4 
NN5 - 8.4 
NN6 - 10.2 

2.2 2.2 1.2 
1.7 0.3 - 0.1 
1.7 0.8 1.2 
0.8 0.3 0.8 

- 1.2 0.2 - 1.1 
- 0.1 - 0.1 - 0.1 
- 1.1 0.3 - 1.6 
- 1.1 - 0.1 - 1.1 

0.5 - 0.4 - 0.5 
- 0.1 -0.1 0.3 
- 0.1 -0.1 - 1.1 

0.8 - 0.1 - 1.6 

0.4 - 0.1 - 1.6 
- 0.1 -0.1 0.3 

1.2 -0.1 - 0.6 
0.8 - 0.1 - 1.6 

- 0.7 0.4 0.5 
0.3 -0.1 0.8 

-0.1 -0.1 0.3 
0.3 -0.1 0.3 

- 3.2 0.3 3.3 
1.7 0.3 5.3 

- 2.6 -0.1 2.9 
- 1.6 -0.1 2.9 

0.3 0.2 0.0 
0.3 - 0.1 0.8 
0.3 0.3 0.3 
0.8 - 0.1 - 0.1 

- 2.3 - 0.1 -0.8 
- 0.6 0.3 - 3.1 
- 1.6 0.3 - 2.6 
- 2.6 0.3 - 1.6 

3.6 - 0.4 - 0.3 
4.1 0.8 0.8 
2.9 0.8 - 0.1 
3.7 0.3 1.2 

3.6 0.7 4.3 
5.3 0.8 4.5 
4.9 0.8 4.5 
3.7 0.8 2.9 
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TABLE 5 (continued) 

No. -R Chemical shift 

Ipso Ortho Meta Para 

20 -CHO 

21 -CONH, 

22 -COOH 

23 -COF 

24 SiH, 

25 -COG1 

26 

27 

28 

29 

-NH, 

-NHCH, 

-N(CH, )z 

-NHCOCH, 

EXP 8.4 1.2 0.5 5.7 
NN4 6.8 0.8 0.3 2.1 
NN5 9.0 1.2 0.8 5.3 
NN6 8.3 2.1 0.8 5.3 

EXP 5.0 - 1.2 0.1 3.4 
NN4 4.9 1.2 0.3 4.5 
NN5 6.4 0.8 0.3 4.5 
NN6 4.9 - 1.1 0.3 3.3 

EXP 2.1 1.6 -0.1 5.2 
NN4 3.7 1.2 0.3 5.7 
NN5 2.9 2.1 -0.1 6.0 
NN6 2.9 0.8 0.3 5.7 

EXP 4.3 1.6 -0.7 5.3 
NN4 4.1 0.8 0.3 6.8 
NN5 3.3 -0.1 -0.1 5.3 
NN6 4.1 1.2 0.3 6.8 

EXP - 0.1 8.0 0.3 2.0 
NN4 - 1.6 7.2 - 0.1 1.2 
NN5 - 2.1 6.8 -0.1 0.8 
NN6 - 0.1 7.9 - 0.1 1.2 

EWJ 4.7 2.7 0.3 6.6 
NN4 4.1 0.8 0.3 6.8 
NN5 4‘1 2.1 0.3 6.8 
NN6 4.1 1.7 0.3 6.4 

EXP 18.2 - 13.4 0.8 - 10.0 
NN4 18.1 - 5.5 0.3 - 7.6 
NN5 19.1 - 7.6 0.3 - 5.5 
NN6 18.1 - 11.1 0.8 - 6.9 

EXP 21.4 - 16.2 0.8 - 11.6 
NN4 24.9 - 10.2 0.3 - 8.4 
NN5 26.4 - 11.1 0.3 - 7.6 
NN6 22.9 - 13.4 0.8 - 7.6 

EXP 22.5 - 15.4 0.9 - 11.5 
NN4 27.3 - 11.1 0.3 - 8.4 
NN5 27.3 - 11.1 0.3 - 8.4 
NN6 25.6 - 12.2 0.3 - 7.6 

EXP 9.7 - 8.1 0.2 - 4.4 
NN4 11.2 - 4.3 0.3 - 4.9 
NN5 10.8 - 5.5 0.8 - 4.3 
NN6 10.5 - 6.2 0.8 - 4.9 
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TABLE 5 (continued) 

No. -R Chemical shift 

bo Ortho Meta Para 

30 -NHNH, 

31 -N(CH,)NO 

32 -NO, 

33 -NCS 

34 -OH 

35 -OCOCH, 

36 -OSi(CIJ,), 

37 

38 

39 

-SH 

-SCN 

SOCH, 

EXP 22.8 - 16.5 0.5 
NN4 24.2 - 9.3 0.3 
NN5 24.9 - 11.1 0.8 
NN6 23.5 - 13.4 0.8 

EXP 23.7 - 9.5 0.8 
NN4 22.9 - 10.2 0.8 
NN5 24.2 - 10.2 1.2 
NN6 20.6 - 13.4 0.8 

EXP 19.9 - 4.9 0.9 
NN4 19.6 - 4.9 0.8 
NN5 18.1 - 6.2 1.2 
NN6 19.1 - 5.5 1.2 

Exp 3.0 - 2.7 1.3 
NN4 3.3 - 2.1 1.2 
NN5 2.1 - 4.9 1.2 
NN6 2.9 - 1.6 0.8 

EXP 26.9 - 12.8 1.4 
NN4 28.2 - 11.1 0.8 
NN5 30.2 - 16.2 1.2 
NN6 28.2 - 12.2 1.2 

EXP 22.4 - 7.1 0.4 
NN4 21.1 - 10.2 1.2 
NN5 20.1 - 11.1 1.2 
NN6 21.7 - 11.1 1.2 

EXP 26.8 - 8.4 0.9 
NN4 25.6 - 10.2 0.8 
NN5 24.9 - 10.2 0.3 
NN6 27.3 - 9.3 0.8 

EXP 2.1 0.7 0.3 
NN4 1.7 - 0.1 0.8 
NN5 2.5 - 0.6 0.3 
NN6 2.1 0.8 0.8 

EXP - 3.7 2.5 2.2 
NN4 - 4.9 0.3 0.8 
NN5 - 3.7 2.9 0.6 
NN6 - 4.3 1.2 0.8 

EXP 17.6 - 5.9 1.1 
NN4 17.2 - 6.5 0.8 
NN5 15.5 - 3.7 0.8 
NN6 17.7 - 6.9 1.2 

- 9.6 

- 6.2 
- 6.9 
- 7.6 

- 1.4 
- 4.3 
- 1.6 
- 5.5 

6.1 
5.7 
4.9 
4.9 

- 1.0 
0.3 

- 0.6 
- 1.1 

- 7.4 
- 6.9 
- 7.6 
- 6.2 

- 3.2 
- 2.1 
- 3.7 
- 5.5 

- 7.1 
- 5.5 
- 9.3 
- 5.5 

- 3.2 
- 3.7 
- 2.6 
- 1.6 

2.2 
1.1 
2.5 
1.7 

2.4 
0.3 

- 0.1 
1.7 
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TABLE 5 (continued) 

105 

No. -R Chemical shift 

Ipso Ortho Meta Para 

40 -SO,CH, 

41 -SO&l 

42 -F 

43 -C(CW, 

44 -CH,C(CH,), 

Testing set 
45 -CH,COCH, 

46 -CH,N(CH,), 

47 -CH,SOCH, 

48 -CH,SO,CH, 

49 -CC& 

EXP 12.3 - 1.4 0.8 5.1 
NN4 12.3 - 1.1 0.3 3.3 
NN5 13.9 - 0.6 0.8 4.9 
NN6 12.3 - 1.1 0.8 6.0 

EXP 15.6 - 1.7 1.2 6.8 
NN4 15.1 - 3.1 0.8 6.0 
NN5 15.5 - 2.1 1.2 7.5 
NN6 16.8 - 1.1 0.8 7.5 

EXP 34.8 - 13.0 1.6 - 4.4 
NN4 36.0 - 14.7 1.7 - 4.3 
NN5 31.4 - 16.2 1.2 - 4.9 
NN6 32.7 - 11.1 1.2 - 4.9 

EXP 22.1 
NN4 19.1 
NN5 19.6 
NN6 22.3 

- 3.1 
- 4.9 
- 5.5 
- 4.9 

EXP 10.6 
NN4 10.1 
NN5 10.5 
NN6 10.5 

- 3.4 
- 5.5 
- 3.7 
- 3.7 

1.5 
-0.1 

1.2 
0.3 

- 0.4 
0.3 

- 0.1 
-0.1 

- 1.0 
0.3 

-0.1 
- 0.1 

- 3.1 
-3.1 
- 2.6 
- 3.1 

EXP 6.0 1.0 0.2 - 1.6 
NN4 7.9 - 0.1 0.3 - 2.1 
NN5 1.2 3.3 0.3 - 1.1 
NN6 5.7 2.5 - 0.1 - 1.1 

EXP 11.1 0.8 - 0.2 - 1.5 
NN4 12.3 - 0.6 - 0.1 - 1.1 
NN5 11.2 0.8 - 0.1 - 1.6 
NN6 11.6 0.8 - 0.1 - 2.1 

EXP 
NN4 
NN5 
NN6 

0.8 1.5 0.4 - 0.2 
10.1 -0.1 -0.1 - 0.6 
10.8 0.3 0.3 - 0.1 
8.6 1.2 -0.1 - 1.6 

EXP -0.1 2.1 0.6 0.6 
NN4 6.4 - 0.1 0.3 - 1.6 
NN5 2.5 1.7 0.3 - 1.1 
NN6 5.7 2.1 -0.1 - 1.1 

EXP 16.3 - 1.7 -0.1 1.8 
NN4 3.7 1.7 0.3 4.9 
NN5 - 6.2 6.4 - 0.6 7.2 
NN6 5.3 -2.1 - 0.1 1.2 
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TABLE 5 (continued) 

No. -R Chemical shift 

Ipso Ortho Meta Para 

50 -CH,Br 

51 -CH,I 

52 -C(CH,)=CH, 

53 -COCH, 

54 -COCH,CH, 

55 -CON(CH,), 

56 -COOCH, 

57 -Si(CH,), 

58 -NHCH,CH, 

59 -N(CH,CH,), 

EXP 9.5 0.7 0.3 0.2 
NN4 10.5 0.3 - 0.1 0.8 
NN5 10.1 1.2 0.3 0.8 
NN6 9.4 0.8 - 0.1 - 0.6 

EXP 10.5 0.0 0.0 - 0.9 
NN4 10.5 0.3 -0.1 0.8 
NN5 9.7 2.1 0.3 0.8 
NN6 9.7 0.8 -0.1 - 1.1 

EXP 
NN4 
NN5 
NN6 

12.6 - 3.1 - 0.4 - 1.2 
18.1 - 6.2 0.3 - 4.9 
19.1 - 4.9 0.3 -4.3 
14.3 - 5.5 0.3 -2.1 

EXP 8.9 0.1 - 0.1 4.4 
NN4 7.9 - 0.1 0.3 2.1 
NN5 13.5 - 3.1 0.3 0.3 
NN6 11.2 - 4.3 0.3 0.8 

EXP 
NN4 
NN5 
NN6 

8.8 0.2 - 0.5 4.3 
5.3 0.3 0.3 2.5 

13.9 - 3.7 0.3 - 1.1 
10.5 0.3 0.3 - 0.6 

EXP 8.0 - 1.5 - 0.2 1.0 
NN4 0.6 2.9 0.3 5.3 
NN5 9.7 - 1.1 0.3 0.8 
NN6 12.7 3.7 0.3 1.2 

EXP 2.0 1.2 -0.1 4.3 
NN4 0.8 2.1 0.3 6.0 
NN5 2.5 2.9 - 0.1 6.0 
NN6 9.7 2.5 0.3 2.5 

EXP 11.7 5.9 - 0.7 0.3 
NN4 12.7 - 2.1 -0.1 - 2.1 
NN5 10.1 2.1 - 0.1 - 0.6 
NN6 12.3 2.1 - 0.1 0.3 

EXP 20.0 - 15.7 0.7 - 11.4 
NN4 23.5 - 9.3 0.3 - 8.4 
NN5 23.5 - 8.4 0.3 - 6.9 
NN6 24.9 - 11.1 0.3 - 8.4 

EXP 19.3 - 16.5 0.6 - 13.0 
NN4 24.9 - 10.2 0.3 - 8.4 
NN5 22.9 - 6.9 -0.1 - 6.9 
NN6 28.2 - 8.4 -0.1 - 7.6 
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TABLE 5 (continued) 

No. -R Chemical shift 

Ipso Ortho Meta Para 

60 -NC0 EXP 5.1 - 3.7 1.1 - 2.8 

NN4 2.5 - 2.1 1.2 0.8 

NN5 - 2.1 -0.1 1.2 2.9 

NN6 -3.1 0.8 0.8 0.3 

61 -OCH, 

62 -0CN 

EXP 31.4 - 14.4 1.0 - 7.7 

NN4 38.1 - 16.2 1.2 - 6.9 

NN5 38.1 - 22.9 1.2 - 12.2 

NN6 30.2 - 20.1 1.2 - 11.1 

EXP 25.0 - 12.7 2.6 - 1.0 

NN4 15.9 - 9.3 1.2 -0.1 

NN5 21.7 - 10.2 1.7 - 1.1 

NN6 18.1 - 8.4 1.2 - 2.1 

63 SCH, EXP 10.0 - 1.9 0.2 - 3.6 

NN4 14.3 - 6.2 0.8 - 4.3 

NN5 17.2 - 6.2 0.3 - 3.7 

NN6 22.9 - 9.3 1.2 - 2.6 

64 -Cl EXP 6.3 0.4 1.4 - 1.9 

NN4 10.8 - 4.9 1.2 - 0.1 

NN5 10.1 - 6.2 1.2 - 1.6 

NN6 - 0.1 0.8 0.8 - 2.1 

factory interpretation of the meaning of the feedback connections and their 
potential importance for achieving the better fit of output activities with 
the required values. 
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