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The recurrent neural network is a feed-forward network ascribed to a parent neural network with feed-back 
connections (or in another term, oriented cycles). Its adaptation is performed by an analog of the standard 
back-propagation adaptation method. The recurrent neural network approach is illustrated by prediction and 
classification of 13C NMR chemical shifts in a series of monosubstituted benzenes. The descriptors (input 
activities) of functional groups are determined by 11 nonnegative integers that correspond to numbers of 
appearance of some substructural features in the corresponding molecular graphs. The obtained results 
indicate that these descriptors properly describe the basic physical and chemical nature of functional groups. 

INTRODUCTION 

Recent progred2 of the neural network paradigm, mainly 
the layered feed-forward neural networks adapted by the back- 
propagation ~trategy,~ offers new mathematical and compu- 
tational tools equipped by learning features. Their impact to 
chemistry4 is manifested not only by effective correlations 
between molecular structure and activity but also by algorithms 
for building expert systems that, in turn, classify chemical 
reactions semiquantitatively or qualitatively. 

Recently, Maggiora et aL5 have published a very interesting 
computational look at general properties of the feed-forward 
neural networks. Since these are analytically very complicated, 
there is a small chance to derive conclusions that are satisfied 
for all of them, irrespective of their structure. In order to 
overcome this serious drawback of their mathematical com- 
plexity, it is of great importance to carry out some computer 
experiments for better understanding of their properties. 
Maggiora et al.5 have focused on a number of problems that 
arise in essentially all neural-network applications and are 
especially important in chemical applications of structure- 
activity and/or structure-property relationships. Moreover, 
they gave special emphasis on the critical issues of small data 
sets and noisy data that plague almost all chemical applications 
of neural networks. 

The purpose of this paper is to study the so-called recurrent 
neural networks3q6 (assigned to neural networks with feed- 
back connections) and demonstrate their simple applicability 
for classification and prediction of l3C NMR chemical shifts 
in a series of monosubstituted benzenes. Recently, we have 
studied’ the same application by the neural networks that are 
composed of feed-back connections or graph-theoretically, 
oriented cycles of connections. For these neural networks the 
standard back-propagation adaptation is inapplicable; the 
hidden and output activities are determined by a string of 
coupled nonlinear equations. An updating of threshold and 
weight coefficients must be done very carefully to avoid 
inappropriate displacement of activities from their current 
equilibrium values. The approach of recurrent neural net- 
work3.6 allows us to overcome this very serious difficulty of 
neural networks with feed-back connections. We assign to a 
parent neural network with feed-back connections the so- 
called recurrent neural network, which is of the standard feed- 
forward type. It corresponds to the simple iterative solution 
of the above-mentioned string of equations that determines 
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Figure 1. Illustrative example of simple parent neural network 
composed of two input neurons (1 and 2), two hidden neurons (3 and 
4), andoneoutput neuron ( 5 ) .  The hidden and output neurons induce 
in the parent network a complete subgraph, where every two neurons 
are adjacent by two oppositely oriented connections and each neuron 
is adjacent with the oriented loop that starts and ends at the neuron. 

the activities of hidden and output neurons. After a finite 
number of the iterative steps the process of solution is stopped, 
and then the activities of the last kth layer correspond to the 
kth iterative solution. 

The recurrent neural networks, adapted by the standard 
back-propagation strategy, overcome the divergence diffi- 
culties of networks with feed-backconnections. Their potential 
applicability in chemistry consists of a possibility to improve 
classification of patterns described by complex descriptors. 
The significance of descriptors for prediction of properties is 
reflected more adequately by feed-back interactions between 
input and output activities. 

THEORY AND RECURRENT NEURAL NETWORKS 

A recurrent neural network3s6 may be assigned to the so- 
called parent neural nelwork that contains oriented cycles 
(feed-back connections). We shall postulate that the parent 
network is determined by an oriented graph* composed of 
neurons (vertices) and connections (oriented edges). The 
symbol ri (ri-l) denotes a subset composed of all successors 
(predecessors) of the neuron Ui in the parent network. The 
set of neurons is divided into three disjointed subsets of the 
so-called input neurons, hidden neurons, and output neurons. 
All the hidden and output neurons induce in the parent network 
a complete subgraph (Le., each neuron is adjacent with other 
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Figure 2. Plot of the transfer functionf(6) determined by eq 2a for 
A = -1 and B = 1 .  

neurons by two oppositely oriented connections and with itself 
by an oriented loop) whereas the input neurons are incident 
only with connections that are outgoing from them (see Figure 
1). The activities of input neurons are kept fixed while the 
activities of hidden and output neurons are determined by 

xi =f(€i )  (la) 

where 9i and oij are the threshold coefficient (assigned to the 
neuron ui) and weight coefficient (assigned to the connection 
outgoing fromu, and incoming to&), respectively. The transfer 
function A[) is determined by 

It maps real axis (-OD,=) onto an open interval (A,B), where 
A I 0 < B, and its first derivative is 

The transfer function is monotonously increasing and fulfilling 
A[) - A as 4 - --CD andflf) - B as 4 - a (see Figure 2). 

The activities of the parent neural network are determined 
by a string of coupled nonlinear equations ( l a  and 1 b) that 
may be solved (for fixed activities of input neurons and for 
given threshold and weight coefficients) only iteratively 
(providing that they have a common solution-fixed point). 
This is the main obstacle for broader applications of neural 
networks with feed-back connections, their activities are not 
determined in such a simple and finite recurrent scheme as 
the activities of the feed-forward neural n e t ~ o r k s . ~  

An iterative approach of solution (eq 1) may be outlined 
as follows: Initially (zero step), the input activities xi of input 
neurons are kept fmed and other activities of hidden and output 
neurons are put equal to zero. The kth step (k 2 1) consists 
in the evaluation of activities of hidden and output neurons 
by 

The resulting activity is nonzero (upper raw) if there exists 
at least one neuron j E ri-1 with nonzero activity evaluated 
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Figure 3. Recurrent neural network assigned to the parent network 
displayed in Figure 1 .  This network is composed of five layers &, 
L1,  ..., L4. The bottom layer & is composed entirely of input neurons, 
the next layer Ll is composed entirely of hidden neurons, and the 
forthcoming higher layers are composed of both hidden and output 
neurons. The value of k (right column) determines an iteration that 
produces the given layer. To keep the drawing of the network simple, 
the connections between the bottom layer (k = 0) and the higher 
layers (k = 2, 3,  4) are omitted. 

in the previous (k - 1)th step. In the opposite case (lower 
row), if all neuronsj f ri-l have zero activities in the previous 
(k - 1)th step, then the resulting activity is also equal to zero. 
The above iterative process is recurrently repeated until all 
hidden and output activities remain constant within a pre- 
scribed precision. 

What is very interesting is that the above iterative scheme 
may be considered as a straightforward generalization of the 
evaluation of activities in a feed-forward neural network.3 
The iterative .scheme (eq 3) may be simply schematically 
visualized by expanding the recurrent neural network in a 
feed-forward counterpart3 (see Figure 3) composed of Lo, L1, 
Lz, ... layers. The bottom layer h is composed entirely of 
input neurons, whereas a layer Lk (for k 2 1) is composed of 
those neurons that are the I' image of neurons from the previous 
layer Lk-1, and for which the formula gives nonzero activites 

Lk = {r(Lk-l); Xi(k) # 0) (4) 

The neurons from L k  are linked by up-oriented connections 
with neurons from the lower layers with nonzero activities. 
Moreover, all neurons indexed by the same index i but from 
different layers are evaluated by the same threshold coefficient 
ai. Similarly, all connections [ij] between neurons Ui and Uj 
from the juxtaposed layers are always evaluated by the same 
weight coefficient uji. 

We see that it is possible to assign to each parent network 
the recurrent neural network (a kind of feed-forward neural 
network). It may have an infinite number of layers, but 
practically this number is bounded from above by a positive 
finite number. Going successively through all its layers we 
are doing nothing but a recurrent repetition of eq 3. 

An approach to the adaptation process of recurrent neural 
networks is based on its interpretation as a simple feed-forward 
recurrent network. Since the activities of hidden and output 
neurons are now determined by strings of coupled nonlinear 
equations, their iterative solution (eq 3) consists in a successive 
evaluation of activities in the iteratively constructed recurrent 
network. After a finite number of steps, the activities of output 
neurons will be nonzero, and these activities are successively 
turning (assuming that this process converges) to their exact 
(self-consistent) values. This is true not only for output neurons 
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from the last layer but also for output neurons from lower 
layers, which activity values may differ from each other in 
different layers. We stress that weight and threshold coef- 
ficients of corresponding connections and neurons in different 
layers are equal. 

The presence of output neurons in different layers opens a 
very interesting new possibility3 of how to use the recurrent 
neural networks for generation of different output activities 
for the same vector of input activities. For instance, an object 
may be classified by a set of different classifiers that correspond 
to successively appearing properties of the given object (e.g., 
developed in the successive time steps). Then these different 
classifiers will be joined with different layers of the neural 
network. After adaptation of neural network, it can give for 
one input a set of successive outputs taken from output neurons 
from different layers. During the adaptation process for the 
method, the agreement of outputs with the required values 
must be observed at all those layers where we are taking output 
classifiers. 

The recurrent neural networks involve a special kind of 
adaptation process. As follows from the above discussion, the 
iterative solution (eq 3) gives after a finite number (say r 1 
1) of steps nonzero output activities. Hence, starting from 
the kth step (where k 1 r )  the resulting output activities may 
be compared with the required ones, and applying standard 
formulas3 it is possible to calculate the gradient of objective 
function determined as a sum of quadrates of differences 
between calculated and required output activities. This 
calculation is realized with respect to a current feed-forward 
network generated from the given parent network at the kth 
step. The gradient calculated at each step is added to a total 
gradient, which was initialized by setting all its entries to 
zero. Finally, after all the required output states 21, 92, ..., 
% have been used [i.e., after q steps, where the first (last) 
vector 21 (%) has been compared with output activities 
produced by the assigned recurrent network composed of r (r 
+ q) layers], the weight and threshold coefficients are updated 
by an analog of the steepest-descent method.3 The major 
problem with this simple adaptation process is the memory 
consumption. Not only does the method have to store the 
total gradient while the different required output activities 
are used, but each hidden and output neuron must store the 
sequence of its activities through which it was passing during 
the processing. 

KVASNI~KA ET AL. 

SIMPLE ILLUSTRATIVE EXAMPLE-SUMMATION 
OF TWO 2-DIGIT BINARY NUMBERS 

The theory of recurrent neural networks outlined in the 
previous section will be illustrated by a simple example of 
summation of two 2-digit binary numbers 

where a’s are 0-1 digits. This scheme may be realized by 
16-different ways (see Table I). The parent neural network 
is composed of four input neurons (with activities xl-xq), five 
hidden neurons (x5-xg), and one output neuron (xlo); the 
hidden and output neurons induce in this network a complete 
oriented subgraph (see Figure 4). The corresponding recurrent 
neural network is horizontally structured into four layers, Lo- 
&, where the bottom layer & is composed of input neurons 
while the forthcoming layers L1-153 are the same and are 
composed of all hidden and output neurons. The neurons 
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Figure 4. (A) Illustrates the parent neural network used for the 
classification of sum of two 2-digit binary numbers. The separate 
blocks correspond to input neurons ( 1 4 ) ,  hidden neurons (5-9), and 
output neuron (10). All hidden and output neurons are adjacent by 
pairs of opposite-oriented connections, and each of these neurons is 
adjacent to an oriented loop. (B) Illustrates the corresponding 
recurrent neural network composed of four layers. The activities of 
output neuron (10) from layers LI ,  Lz, and LS are required outputs 
of the network. 

Table I. Summations of Two 2-Digit Binary Numbers 

~~ ~ ~ 

1 0 0 0 0 0 0 0 o + o = o  
2 0 0 0 1 0 0 1 0 + 1 = 1  
3 0 0 1 0 0 1 0 0 + 2 = 2  
4 0 0 1 1 0 1 1 0 + 3 = 3  
5 0 1 0 0 0 0 1 1 + 0 = 1  
6 0 1 0 1 0 1 0 1 + 1 = 2  
7 0 1 1 0 0 1 1 1 + 2 = 3  
8 0 1 1 1 1 0 0 1 + 3 = 4  
9 1 0 0 0 0 1 0 2 + 0 = 2  

10 1 0 0 1 0 1 1 2 + 1 = 3  
11 1 0 1 0 1 0 0 2 + 2 = 4  
12 1 0 1 1 1 0 1 2 + 3 = 5  
13 1 1 0 0 0 1 1 3 + 0 = 3  
14 1 1 0 1 1 0 0 3 + 1 = 4  
15 1 1 1 0 1 0 1 3 + 2 = 5  
16 1 1 1 1 1 1 1 3 + 3 = 6  

from two juxtaposed layers are fully adjacent by up-oriented 
connections, and furthermore, the neurons from Lo and Li 
(for 1 I i I 3) are also adjacent by up-oriented connections 
(see Figure 4). In such a way we have arrived at the feed- 
forward neural network with theconstraint that corresponding 
connections with the same terminal neurons in different layers 
are evaluated by the same weight coefficients. For fixed 
threshold and weight coefficients the iterative solution (eq 3) 
is performed so that, successively going from the bottom layer 
Lo to the top layer L3, we calculate initially activitiesof neurons 
from the layer 151. This layer is fed by input activities from 
the layer Lo, in particular we put xi(o) = aj, for i = 1, 2, 3, 
4. Then knowing the activities of neurons from L1 (and also 
the input  activities f rom &), we calculate the activities of 
neurons from the layer L2, and so on. Activities of the output 
neuron from the layers L1 to L3, denoted by x&), x d 2 ) ,  x d 3 ) ,  
are considered as outputs of neural network that are compared 
with required output equal to 0-1 digits a7, (Y6, a5 from the 
scheme (eq 9, respectively. The partial derivatives of 
minimized objective function are calculated by standard back- 
propagation method3 separately for each level Li, where 1 I 
i 5 3, and the derivatives are summed up through all these 
layers. The updating of threshold and weight coefficients, 
done separately for each input pattern from Table I, is 
performed by the usual steepest-descent approach accelerated 
by the so-called momentum method.3 The recurrent neural 
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Table 11. Illustrative Output from Recurrent Neural Network for 
Pattern 1 + 1 = 2 
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Table 111. Descriptors of Functional Groups 
di meaning of descriptor 

1 0 1 0 1 
2 0 1 0 1 0.03 (a,) 

4 0 1 0 1 0.01 (as) 

network has been adapted after a few hundred cycles with the 
steepest-descent parameter X = 0.1 and the momentum 
parameter a = 0.7. An illustrative example of the adapted 
network is given in Table 11. We see that the present type of 
recurrent neural network is able to generate for each input 
pattern from Table I a sequence of output activities that are 
closelyrelated to therequiredo-1 digits. It may beunderstood 
as a simple generalization of standard feed-forward neural 
networks that are adapted by back-propagation approach, 
which is potentially well applicable in the cases when the input 
patterns are classified by a sequence of "properties". 

3 0 1 0 1 0.98 (a6) 

APPLICATION-13C CHEMICAL SHIFTS OF 
MONOSUBSTITUTED BENZENES 

The present theory of recurrent neural networks outlined 
and illustrated in the previous sections will be applied as a 
classifier of monosubstituted benzenes with respect to their 
13C NMR chemical shifts (four different positions on the 
benzene skeleton called ipso, ortho, meta, and para position). 
The used parent neural networks are composed of 11 input 
neurons (their activities are equal to descriptors, which 
determine in a proper way the structure of a given substituent 
-X), 0-6 hidden neurons, and 4 output neurons (with activities 
equal to chemical shifts in ipso, ortho, meta, and para position, 
respectively). The chemical shifts of monosubstituted ben- 
z e n e ~ ~  belong to a relatively large interval of real numbers. 
Therefore, they should be compressed (see refs 7 and 11) to 
values from a smaller open interval (A,B) by the following 
nonlinear transformation (cf. eq 2) 

ymax + ymine-u(X+B) 
1 + 

t(x) = 

The coefficients a and B are adjusted such that Xmin I x I 
Xmax is mapped onto b m i n  + e) I Y I b m a x  - e). A positive 
number e is determined by c = b m a x  - )"in)K, for a small 
positive K ranged by 0 < K < '/t. An inverse of eq 6 is 

(7) 

The coefficients a and B are determined by 

For our purposes, the above parameters have been selected as 

0.025 &e., e = 0.05). This means that all chemical shifts 
taken from the open interval (-18,36) are compressed by the 
transformation (eq 6) to the open interval (0.05,1.95). The 
compressed values of chemical shifts are appropriate for 
recurrent neural network applications with transfer function 
(eq 2a) determined by A = 0 and B = 2. 

The calculated output activities of recurrent neural networks 
are compared with required output activities (transformed 

fOllOWS: Xmin = -18, Xmax 36, Ymin = 0, Y,, = 2, and K = 

First-Level Descriptors 
number of lone electron pairs on the first level atoms 
sum of the main quantum numbers (each decreased by one) 

number of hydrogen atoms attached to the first-level atoms 
Second-Level Descriptors 

number of lone electron pairs on the second level atoms 
sum of the main quantum numbers (each decreased by one) 

number of hydrogen atoms attached to the second-level atoms 
number of a bonds that connect the first- and second-level atoms 

Third-Level Descriptors 
number of lone electron pairs on the third-level atoms 
sum of the main quantum numbers (each decreased by one) 

number of hydrogen atoms attached to the third-level atoms 
number of a bonds that connect the second- and third-level atoms 

of the first level atoms 

of the second-level atoms 

of the third level atoms 

di I 

chemical shifts) after three or four iterations (k = 3 or k = 
4). We use the same training (44 objects) and testing sets (20 
objects) of monosubstituted benzenes as in our recent paper7 
solving the same problem by neural networks with feed-back 
connections. The substituents -X are determined for purposes 
of the present recurrent network by 1 1 descriptors (nonnegative 
integer input activities) that determine in an additive way the 
topology and physicochemical nature of functional groups.lOJ1 
These descriptors are divided into three categories: the first-, 
second-, and third-level descriptors, in a dependence on the 
distance of atoms of the functional group from the ipso carbon 
atom on the benzene ring. That is, the descriptors determine 
the a, 8, and y effects with respect to the carbon atoms of the 
benzene ring, the higher effects (in particular 6 and e effects) 
are neglected. The descriptors are determined in Table 111, 
where only non-hydrogen atoms are explicitly considered, the 
hydrogen atoms linked to the non-hydrogen atoms of functional 
groups are considered as their property. Simple illustrative 
examples of the descriptors are given in Table IV. 

The recurrent neural network applied for prediction and 
classification of 13C NMR chemical shifts in a series of 
monosubstituted benzenes has been performed for different 
numbers of iterative steps k (3-5) and hidden neurons NH 
(0-6). The most minimal value of the objective function (E 
= 0.08) and the best predicted values of chemical shifts for 
monosubstituted benzenes from the training set are obtained 
for k = 3 and NH = 6. That is, the parent neural network 
contains six hidden neurons, and the recurrent neural network 
assigned to this parent network is constructed as a four-layer 
feed-forward network, where the activities of output neurons 
from the fourth layer (k = 3) are compared with required 
activities (compressed chemical shifts). For this recurrent 
neural network, the experimental9 and calculated chemical 
shifts are listed in Table V. We see that the functional group 
S i ( C H &  shows the greatest discrepancy in ipso position 
from testing-set objects. The singularity of this functional 
group has been also observed in our recent workll devoted to 
an application of feed-forward neural networks for prediction 
and classification of reaction yields of nitration of monosub- 
stituted benzenes. The same observation has been achieved 
also by Elrod et a1.12 (see also ref 13), who studied the same 
classification problem but with descriptors determined as 
elements of the BE-matrix (an analog of adjacency matrix). 
It seems that the silicon atom probably needs further, more 
specific descriptors. 
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Table IV. Illustrative Examples of Descriptors Assigned to Simple Functional Groups 
-X di d2 d3 d4 dr, ds di da d9 dio dit 

-CH, 0 1 3 0 0 0 0 0 0 0 0 
-NO2 0 1 0 4 2 0 2 0 0 0 0 
-N(CH3)NO 1 1 0 1 2 3 0 2 1 0 1 

Table V. Results of I3C NMR Chemical Shifts of Monosubstituted Benzenes from Testing Set 
no. -X ipso ortho meta para 

1 -CH2COCH3 exP 
cal 

2 -C&N(CH3)2 exP 
cal 

3 -CH2SOCH3 exP 
cal 

4 -CH2S02CH3 exP 
cal 

5 -CCI3 exP 
cal 

6 -CH2Br exP 
cal 

7 -CH2I exP 
cal 

8 -C(CHd=CHz exP 
cal 

9 -COCH3 exP 
cal 

10 -COCH2CH3 exP 
cal 

1 1  -CON(CH& exP 
cal 

12 -COOCH3 exP 
cal 

13 -Si( CH3) 3 exP 
cal 

14 -NHCHzCH3 exP 
ca I 

15 -N(C&CH3)2 exP 
cal 

16 -NCO exP 
cal 

17 4 C H 3  exP 
cal 

18 -OCN exP 
cal 

19 S C H 3  exP 
cal 

20 -c1 exP 
cal 

SUMMARY 

The recurrent neural network approach offers a simple 
possibility on how to overcome the convergence difficulties of 
the neural networks with feed-back connections. These neural 
networks may be adapted by a simple analog of the standard 
back-propagation strategy widely used in the feed-forward 
layered neural networks. The functional groups are described 
by 1 1 descriptors that reflect in an additive manner the topology 
and physicochemical nature of their atoms and bonds. The 
obtained results for 13C NMR chemical shifts of monosub- 
stituted benzenes indicate that the recurrent neural networks 
together with the used form of descriptors offer a promising 
technique for classification and prediction of molecular 
properties, which is based namely on the topology of the 
corresponding structural formulas. 
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