TINKER

Software Tools for Molecular Design

Version 8.4 February 2018

TINKER

Software Tools for Molecular Design
Version 8.4
February 2018

Copyright © 1990-2018 by Jay William Ponder
All Rights Reserved

Copyright © 1990-2018
by Jay William Ponder
All Rights Reserved

User's Guide Cover Illustration by Jay Nelson
Courtesy of Prof. R. T. Paine, Univ. of New Mexico

TINKER IS PROVIDED "AS IS" AND WITHOUT ANY WARRANTY
EXPRESS OR IMPLIED. THE USER ASSUMES ALL RISKS OF
USING THIS SOFTWARE. THERE IS NO CLAIM OF THE
MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE.

YOU MAY MAKE COPIES OF TINKER FOR YOUR OWN USE,
AND MODIFY THOSE COPIES. YOU MAY NOT DISTRIBUTE ANY
MODIFIED SOURCE CODE OR DOCUMENTATION TO USERS AT
ANY SITE OTHER THAN YOUR OWN. PLEASE SIGN AND
RETURN THE TINKER LICENSE AGREEMENT IF YOU MAKE
USE OF THIS SOFTWARE.

V8.4 02/18

TINKER User's Guide

TINKER

Software Tools for Molecular Design
Version 8.4 February 2018

Table of Contents Page
1. Introduction to the Software 5
2. Installation on your Computer 7
3. Types of Input & Output Files 10
4. Potential Energy Programs 13
5. Additional Utility Programs & Scripts 19
6. Special Features & Methods 23
7. Use of the Keyword Control File 29
8. Force Field Parameter Sets 61
9. Descriptions of Source Routines 69

10. Descriptions of Global Variables 139

11. Index of Function & Subroutine Calls 167

12. Test Cases & Examples 196

13. Benchmark Results 198

14. Collaborators & Acknowledgments 202

15. References & Suggested Reading 204

3 TINKER User's Guide 3

TINKER User's Guide

1. Introduction to the Software

What is the TINKER Software?

Welcome to the TINKER molecular modeling package! TINKER is designed to be an easily used and
flexible system of programs and routines for molecular mechanics and dynamics as well as other
energy-based and structural manipulation calculations. It is intended to be modular enough to enable
development of new computational methods and efficient enough to meet most production
calculation needs. Rather than incorporating all the functionality in one monolithic program, TINKER
provides a set of relatively small programs that interoperate to perform complex computations. New
programs can be easily added by modelers with only limited programming experience.

Features and Capabilities
The series of major programs included in the distribution system perform the following core tasks:

(1) building protein and nucleic acid models from sequence
(2) energy minimization and structural optimization
(3) analysis of energy distribution within a structure
(4) molecular dynamics and stochastic dynamics
(5) simulated annealing with a choice of cooling schedules
(6) normal modes and vibrational frequencies
(7) conformational search and global optimization
(8) transition state location and conformational pathways
(9) fitting of energy parameters to crystal data

(10) distance geometry with pairwise metrization

(11) molecular volumes and surface areas

(12) free energy changes for structural mutations

(13) advanced algorithms based on potential smoothing

Many of the various energy minimization and molecular dynamics computations can be performed
on full or partial structures, over Cartesian, internal or rigid body coordinates, and including a variety
of boundary conditions and crystal cell types. Other programs are available to generate timing data
and allow checking of potential function derivatives for coding errors. Special features are available
to facilitate input and output of protein and nucleic acid structures. However, the basic core routines
have no knowledge of biopolymer structure and can be used for general molecular systems.

Due to its emphasis on ease of modification, TINKER differs from many other currently available
molecular modeling packages in that the user is expected to be willing to write simple “front-end"
programs and make some alterations at the source code level. The main programs provided should
be considered as templates for the users to change according to their wishes. All subroutines are
internally documented and structured programming practices are adhered to throughout. The result,
itis hoped, will be a calculational system which can be tailored to local needs and desires.

The core TINKER system consists of nearly 135,000 lines of source written entirely in a portable
Fortran77 superset. Use is made of only some very common extensions that aid in writing highly
structured code. The current version of the package has been ported to a wide range of computers
with no or extremely minimal changes. Tested systems include: Red Hat Linux, Microsoft Windows
9X/NT/2000/XP, Apple 0S9 and 0SX, HP/Compaq/DEC Alphas under Tru64 Unix and OpenVMS,
Hewlett-Packard, IBM, Silicon Graphics and Sun workstations under each vendor's Unix. At present,
our new code is written on various Linux platforms, and occasionally tested for compatibility on

5 TINKER User's Guide 5

various of the other machine and OS combinations listed above. At present, we are in the process of
converting our primary development efforts from Fortran77 to a more modern Fortran dialect. A
machine-translated C version of TINKER is currently available, and a hand-translated optimized C
version of a previous TINKER release is available for inspection. Conversion to C or C++ is under
consideration, but not being actively pursued at this time.

The basic design of the energy function engine used by the TINKER system allows usage of several
different parameter sets. At present we are distributing parameters that implement AMBER ff94 and
ff96, CHARMM19 and 27, MM2, MM3, OPLS-UA, OPLS-AA, Liam Dang's polarizable potentials, and our
own AMOEBA (Atomic Multipole Optimized Energetics for Biomolecular Applications) parameters. In
most cases, the source code separates the geometric manipulations needed for energy derivatives
from the actual form of the energy function itself. Several other literature parameter sets are being
considered for possible future development (ENCAD, MMFF-94, MM4, UFF, etc.), and many of the
alternative potential function forms reported in the literature can be implemented directly or after
minor code changes.

Much of the software in the TINKER package has been heavily used and well tested, but some
modules are still in a fairly early stage of development. Further work on the TINKER system is
planned in three main areas: (1) extension and improvement of the potential energy parameters
including additional parameterization and testing of our polarizable multipole AMOEBA force field,
(2) coding of new computational algorithms including additional methods for free energy
determination, torsional Monte Carlo and molecular dynamics sampling, advanced methods for long
range interactions, better transition state location, and further application of the potential smoothing
paradigm, and (3) further development of Force Field Explorer, a Java-based GUI front-end to the
TINKER programs that provides for calculation setup, launch and control as well as basic molecular
visualization.

Contact Information

Questions and comments regarding the TINKER package, including suggestions for improvements
and changes should be made to the author:

Professor Jay William Ponder
Department of Chemistry, Box 1134
Washington University in Saint Louis
One Brookings Hall

Saint Louis, MO 63130 U.S.A.

office: Louderman Hall, Room 453
phone: (314) 935-4275

fax: (314) 935-4481

email: ponder@dasher.wustl.edu

In addition, an Internet web site containing an online version of this User's Guide, the most recent
distribution version of the full TINKER package and other useful information can be found at
http://dasher.wustl.edu/tinker, the Home Page for the TINKER Molecular Modeling
Package.

6 TINKER User's Guide 6

2. Installation on your Computer

How to Obtain a Copy of TINKER

The TINKER package is distributed on the Internet via either the web site or the anonymous ftp
account on dasher.wustl.edu with an IP number of 128.252.208.48. This node is a web and file
server located in the Ponder lab at Washington University School of Medicine. The package is
available via the web and standard browsers from the TINKER home page at
http://dasher.wustl.edu/tinker/. Alternatively TINKER can be downloaded by logging
into dasher.wustl.edu via anonymous ftp (Username: anonymous, Password: "your email
address") and downloading the software from the /pub/tinker subdirectory. The complete TINKER
distributions as well as individual files can be downloaded from this site.

The easiest way to get TINKER running on your machine is to use the self-extracting installation kit
for either Linux, Windows, or Macintosh OS X 10.3. The installer will guide you through complete
setup of TINKER and the Force Field Explorer (FFE) GUI, and perform all required configuration
chores. The installer Kkits for the three supported systems are tinker4.2-linux.sh,
tinker4.2-windows.exe and tinker4.2-macosx.sit. The Linux and Windows kits each
contain a private copy of a Java and Java3D run-time environment for use with the package. The
Macintosh version requires an OS X 10.3 (Panther) system for installation. The native Java
implementation is used on Macs, and the Java3D package must be downloaded from Apple and
installed prior to using TINKER with Force Field Explorer.

Prebuilt TINKER Executables

The TINKER package is also available as compressed Unix tar archives, Windows zip files, and as a
complete set of uncompressed source and data files. Binaries are provided for machines running
Windows 9X/ME/NT/2000/XP, Linux, and Apple Mac OS X. All of these executables are present in
standard compressed formats as individual programs or as complete sets of executables. It is
expected that other Unix users and PC users who need specially customized versions, will build
binaries for their specific system. Sites with access to the Unix tar, compress and uncompress
commands should simply obtain the archive file tinker.tar.Z. Alternatively, tinker.tar.gz
and tinker.zip containing identical distributions compressed to GNU gzip and Windows ZIP
format are also provided. If you choose to download individual files, you will need at a minimum the
contents of the /doc, /source and /params subdirectories. Also required are the compile/build
scripts from the subdirectory named for your machine type. Other areas contain test cases and
examples, benchmark results, machine-translated C code, and the Force Field Explorer Java GUI for
TINKER. The entire TINKER package, after building the executables, will require from about 40 to
over 150 megabytes of disk space depending on the components installed and the use of shared
libraries in the executables.

Building your Own Executables

The compilation and building of the TINKER executables should be easy for most of the common
workstation and PC class computers. We provide in the /make area a Unix-style Makefile that with
some modification can be used to build TINKER on most Unix machines. As a simpler alternative to
Makefiles for the Unix versions, we also provide machine-specific directories with three separate
shell scripts to compile the source, build an object library, and link binary executables. Three similar
command files are provided for Windows, Macintosh and Open VMS systems. Compilation on Unix
workstations should use the vendor supplied Fortran compiler, if available. The public domain GNU

7 TINKER User's Guide 7

g77 Fortran compiler available from http://gcc.gnu.org/ is also capable of building TINKER
on Linux and other Unix-based machines. The Linux executables we provide are built with the Intel
Fortran for Linux 8.0 compiler. The Portland Group (PGI) and Absoft ProFortran compilers have also
been tested under Linux, both of which generate executables roughly comparable in speed to the
Intel compiler. On Linux, the g77 executables tend to exhibit degraded performance compared with
executables from commercial compilers. Some benchmark results are provided in a later section of
this User's Guide For the Macintosh we distribute executables built under Apple 0S X 10.3 with the
GNU g77 compiler. TINKER also builds on the Macintosh using the Absoft ProFortran compiler. For
PCs running Windows 9X/NT/2000/XP, the distributed TINKER executables are built under the Intel
Fortran for Windows 8.0 compiler. Alternative Windows compilers such as Compaq Visual Fortran,
Lahey/Fujitsu and The Portland Group compilers, and GNU g77 under Cygwin have been tested and
shown to build TINKER correctly. Please see the README files in each of the machine-specific areas
for further information.

The first step in building TINKER using the script files is to run the appropriate
compile.make script for your operating system and compiler version. Next you must use a
library.make script to create an archive of object code modules. Finally, run a 1ink .make script
to produce the complete set of TINKER executables. The executables can be renamed and moved to
wherever you like by editing and running the “rename" script. These steps will produce executables
that can run from the command line, but without the capability to interact with the FFE GUI. Building
FFE-enabled TINKER executables involves replacing the sockets. f source file with sockets.c, and
included the object from the C code in the TINKER object library. Then executables must be linked
against Java libraries in addition to the wusual resources. Sample compgui.make and
linkgui.make scripts are provided for systems capable of building GUI-enabled executables.

Regardless of your target machine, only a few small pieces of code can possibly require
attention prior to building. The first two are the system dependent time and date routines found in
clock. f and calendar. f respectively. Next is the openend. £ routine that facilitates appending
data to the end of an existing disk file. Please uncomment the sections of these routines needed for
your computer type. Version of these system dependent routines suitable for each system are also
provided in the directory for each machine/OS type. The final set of possible source alterations are to
the master array dimensions found in the include file sizes.i. The most basic limit is on the
number of atoms allowed, "maxatm". This parameter can be set to 10000 or more on most
workstations. Personal computers with minimal memory may need a lower limit, perhaps 1000
atoms, depending on available memory, swap space and other resources. A description of the other
parameter values is contained in the header of the file. Note that in order to keep the code completely
transparent, TINKER does not implement any sort of dynamic memory allocation or heap data
structure. This requires that sizes.i dimensioning values be set at least as large as the biggest
problem you intend to run. Obviously, you should not set the array sizes to unnecessarily large
values, since this can tax your compute resources and may result in performance degradation or
overt failure of the executables.

Documentation and Other Information

The documentation for the TINKER programs, including the guide you are currently reading, is
located in the /pub/tinker/doc subdirectory. The documentation was prepared using the Applixware
Words and Graphics programs. Portable versions of the documentation are provided as ascii text in
.txt files and in Adobe Acrobat .pdf file formats. Please read and return by mail the TINKER
license. In particular, we note that TINKER is not “Open Source" as users are prohibited from
redistribution of original or modified TINKER source code or binaries to other parties. While our
intent is to distribute the TINKER code to anyone who wants it, the Ponder Lab would like to remain
the sole distribution site and keep track of researchers using the package. The returned license forms

8 TINKER User's Guide 8

also help us justify further development of TINKER. When new modules and capabilities become
available, and when the almost inevitable bugs are uncovered, we will attempt to notify those who
have returned a license form. Finally, we remind you that this software is copyrighted, and ask that it
not be redistributed in any form.

Where to Direct Questions

Specific questions about the building or use of the TINKER package should be directed to
tinker@dasher.wustl.edu. TINKER related questions or comments of more general interest
can be sent to the Computational Chemistry List (http://www.ccl.net/) run by Jan Labanowski
at the University of Notre Dame. The TINKER developers monitor this list and will respond to the list
or the individual poster as appropriate.

9 TINKER User's Guide 9

3. Types of Input & Output Files

This section describes the basic file types used by the TINKER package. Let's say you wish to perform
a calculation on a particular small organic molecule. Assume that the file name chosen for our input
and output files is sample. Then all of the TINKER files will reside on the computer under the name
sample.xxx where .xxx is any of the several extension types to be described below.

SAMPLE.XYZ

The .xyz file is the basic TINKER Cartesian coordinates file type. It contains a title line followed by
one line for each atom in the structure. Each line contains: the sequential number within the
structure, an atomic symbol or name, X-, Y-, and Z-coordinates, the force field atom type number of
the atom, and a list of the atoms connected to the current atom. Except for programs whose basic
operation is in torsional space, all TINKER calculations are done from some version of the .xyz
format.

SAMPLE.INT

The . int file contains an internal coordinates representation of the molecular structure. It consists
of a title line followed by one line for each atom in the structure. Each line contains: the sequential
number within the structure, an atomic symbol or name, the force field atom type number of the
atom, and internal coordinates in the usual Z-matrix format. For each atom the internal coordinates
consist of a distance to some previously defined atom, and either two bond angles or a bond angle
and a dihedral angle to previous atoms. The length, angle and dihedral definitions do not have to
represent real bonded interactions. Following the last atom definition are two optional blank line
separated sets of atom number pairs. The first list contains pairs of atoms that are covalently bonded,
but whose bond length was not used as part of the atom definitions. These pairs are typically used to
close ring structures. The second list contains ““bonds" that are to be broken, ie., pairs of atoms that
are not covalently bonded, but which were used to define a distance in the atom definitions.

SAMPLE.KEY

The keyword parameter file always has the extension . key and is optionally present during TINKER
calculations. It contains values for any of a wide variety of switches and parameters that are used to
change the course of the computation from the default. The detailed contents of this file is explained
in a latter section of this User's Guide. If a molecular system specific keyfile, in this case
sample.key, is not present, the the TINKER program will look in the same directory for a generic
file named tinker.key.

SAMPLE.DYN

The .dyn file contains values needed to restart a molecular or stochastic dynamics computation. It
stores the current position, current velocity and current and previous accelerations for each atom, as
well as the size and shape of any periodic box or crystal unit cell. This information can be used to
start a new dynamics run from the final state of a previous run. Upon startup, the dynamics programs
always check for the presence of a .dyn file and make use of it whenever possible. The .dyn file is
updated concurrent with the saving of a new dynamics trajectory snapshot.

SAMPLE.END

10 TINKER User's Guide 10

The .end file type provides a mechanism to gracefully stop a running TINKER calculation. At
appropriate checkpoints during a calculation, TINKER will test for the presence of a sample.end
file, and if found will terminate the calculation after updating the output. The .end file can be
created at any time during a computation, and will be detected when the next checkpoint is reached.
The file may be of zero size, and its contents are unimportant. In the current version of TINKER, the
.end mechanism is only available within dynamics-based programs.

SAMPLE.001, SAMPLE.002,

Several types of computations produce files containing a three or more digit extension (.001 as
shown; or .002, .137, .5678, etc.). These are referred to as cycle files, and are used to store various
types of output structures. The cycle files from a given computation are identical in internal structure
to either the .xyz or . int files described above. For example, the vibrational analysis program can
save the tenth normal mode in sample.010. A molecular dynamics-based program might save its
tenth 0.1 picosecond frame (or an energy minimizer its tenth partially minimized intermediate) in a
file of the same name.

SAMPLE.LOG

The Force Field Explorer interface to TINKER saves results of all calculations launched from the GUI
to a log file with the .log suffix. Any output that would normally be directed to the screen after
starting a program from the command line is appended to this log file by Force Field Explorer.

SAMPLE.ARC

A TINKER archive file is simply a series of .xyz Cartesian coordinate files appended together one
after another. This file can be used to condense the results from intermediate stages of an
optimization, frames from a molecular dynamics trajectory, or set of normal mode vibrations into a
single file for storage. TINKER archive files can be displayed as “movies" by the Force Field Explorer
modeling program.

SAMPLE.PDB

This file type contains coordinate information in the PDB format developed by the Brookhaven
Protein Data Bank for deposition of model structures based on macromolecular X-ray diffraction and
NMR data. Although TINKER itself does not use .pdb files directly for input/output, auxiliary
programs are provided with the system for interconverting .pdb files with the .xyz format
described above.

SAMPLE.SEQ

This file type contains the primary sequence of a biopolymer in the standard one-letter code with 50
residues per line. The .seq file for a biopolymer is generated automatically when a PDB file is
converted to TINKER .xyz format or when using the PROTEIN or NUCLEIC programs to build a
structure from sequence It is required for the reverse conversion of a TINKER file back to PDB
format..

SAMPLE.FRAC

The fractional coordinates corresponding to the asymmetric unit of a crystal unit cell are stored in
the . £frac file. The internal format of this file is identical to the . xyz file; except that the coordinates
are fractional instead of in Angstrom units.

11 TINKER User's Guide 11

SAMPLE.XMOL

The ARCHIVE program has the option of converting a series of .xyz cycle files into an XMakemol
XYZ file. These files can be displayed as a movie using the XMakemol display program. Note that the
.xmol file format does not contain TINKER atom type information, so it is not possible to convert an
.xmol file back into a TINKER . xyz file.

SAMPLE.CAR

The ARCHIVE program has the option of converting a series of .xyz cycle files into an Accelerys
Insightll coordinate archive file. These files can be displayed as a movie using the Insightll display
program. Note that the . car file format does not contain TINKER atom type information, so it is not
possible to convert a . car file back into a TINKER .XYZ file.

PARAMETER FILES

The potential energy parameter files distributed with the TINKER package all end in the extension
.prm, although this is not required by the programs themselves. Each of these files contains a
definition of the potential energy functional forms for that force field as well as values for individual
energy parameters. For example, the mm3pro.prm file contains the energy parameters and
definitions needed for a protein-specific version of the MM3 force field.

12 TINKER User's Guide 12

4. Potential Energy Programs

This section of the manual contains a brief description of each of the TINKER potential energy
programs. A detailed example showing how to run each program is included in a later section. The
programs listed below are all part of the main, supported distribution. Additional source code for
various unsupported programs can be found in the /other directory of the TINKER distribution.

ALCHEMY

A simple program to perform very basic free energy perturbation calculations. This program is
provided mostly for demonstration purposes. For example, we use ALCHEMY in a molecular
modeling course laboratory exercise to perform such classic mutations as chloride to bromide and
ethane to methanol in water. The present version uses the perturbation formula and windowing with
an explicit mapping of atoms involved in the mutation ("TAMBER"-style), instead of thermodynamic
integration and independent freely propagating groups of mutated atoms ("CHARMM"-style). Some
of the code specific to this program is limited to the AMBER and OPLS potential functional forms, but
could be easily generalized to handle other potentials. A more general and sophisticated version is
currently under development.

ANALYZE

Provides information about a specific molecular structure. The program will ask for the name of a
structure file, which must be in the TINKER .xyz file format, and the type of analysis desired.
Options allow output of: (1) total potential energy of the system, (2) breakdown of the energy by
potential function type or over individual atoms, (3) computation of the total dipole moment and its
components, moments of inertia and radius of gyration, (4) listing of the parameters used to compute
selected interaction energies, (5) energies associated with specified individual interactions.

ANNEAL

Performs a molecular dynamics simulated annealing computation. The program starts from a
specified input molecular structure in TINKER . xyz format. The trajectory is updated using either a
modified Beeman or a velocity Verlet integration method. The annealing protocol is implemented by
allowing smooth changes between starting and final values of the system temperature via the
Groningen method of coupling to an external bath. The scaling can be linear or sigmoidal in nature. In
addition, parameters such as cutoff distance can be transformed along with the temperature. The
user must input the desired number of dynamics steps for both the equilibration and cooling phases,
a time interval for the dynamics steps, and an interval between coordinate/trajectory saves. All saved
coordinate sets along the trajectory are placed in sequentially numbered cycle files.

DYNAMIC

Performs a molecular dynamics (MD) or stochastic dynamics (SD) computation. Starts either from a
specified input molecular structure (an .xyz file) or from a structure-velocity-acceleration set saved
from a previous dynamics trajectory (a restart from a .dyn file). MD trajectories are propagated
using either a modified Beeman or a velocity Verlet integration method. SD is implemented via our
own derivation of a velocity Verlet-based algorithm. In addition the program can perform full crystal
calculations, and can operate in constant energy mode or with maintenance of a desired temperature
and/or pressure using the Groningen method of coupling to external baths. The user must input the
desired number of dynamics steps, a time interval for the dynamics steps, and an interval between
coordinate/trajectory saves. Coordinate sets along the trajectory can be saved as sequentially

13 TINKER User's Guide 13

numbered cycle files or directly to a TINKER archive .arc file. At the same time that a point along
the trajectory is saved, the complete information needed to restart the trajectory from that point is
updated and stored in the .dyn file.

GDA

A program to implement Straub's Gaussian Density Annealing algorithm over an effective series of
analytically smoothed potential energy surfaces. This method can be viewed as an extended
stochastic version of the diffusion equation method of Scheraga, et al., and also has many similar
features to the TINKER Potential Smoothing and Search (PSS) series of programs. The current
version of GDA is similar to but does not exactly reproduce Straub's published method and is limited
to argon clusters and other simple systems involving only van der Waals interactions; further
modification and development of this code is currently underway in the Ponder research group. As
with other programs involving potential smoothing, GDA currently requires use of the smooth.prm
force field parameters.

MINIMIZE

The MINIMIZE program performs a limited memory L-BFGS minimization of an input structure over
Cartesian coordinates using a modified version of the algorithm of Jorge Nocedal. The method
requires only the potential energy and gradient at each step along the minimization pathway. It
requires storage space proportional to the number of atoms in the structure. The MINIMIZE
procedure is recommended for preliminary minimization of trial structures to an rms gradient of 1.0
to 0.1 kcal/mole/=. It has a relatively fast cycle time and is tolerant of poor initial structures, but
converges in a slow, linear fashion near the minimum. The user supplies the name of the TINKER
.xyz coordinates file and a target rms gradient value at which the minimization will terminate.
Output consists of minimization statistics written to the screen or redirected to an output file, and
the new coordinates written to updated . xyz files or to cycle files.

MINIROT

The MINIROT program uses the same limited memory L-BFGS method as MINIMIZE, but performs
the computation in terms of dihedral angles instead of Cartesian coordinates. Output is saved in an
updated . int file or in cycle files.

MINRIGID

The MINRIGID program is similar to MINIMIZE except that it operates on rigid bodies starting from a
TINKER .xyz coordinate file and the rigid body group definitions found in the corresponding .key
file. Output is saved in an updated . xyz file or in cycle files.

MONTE

The MONTE program implements the Monte Carlo Minimization algorithm developed by Harold
Scheraga's group and others. The procedure takes Monte Carlo steps for either a single atom or a
single torsional angle, then performs a minimization before application of the Metropolis sampling
method. This results in effective sampling of a modified potential surface where the only possible
energy levels are those of local minima on the original surface. The program can be easily modified to
elaborate on the available move set.

NEWTON

14 TINKER User's Guide 14

A truncated Newton minimization method which requires potential energy, gradient and Hessian
information. This procedure has significant advantages over standard Newton methods, and is able
to minimize very large structures completely. Several options are provided with respect to
minimization method and preconditioning of the Newton equations. The default options are
recommended unless the user is familiar with the math involved. This program operates in Cartesian
coordinate space and is fairly tolerant of poor input structures. Typical algorithm iteration times are
longer than with nonlinear conjugate gradient or variable metric methods, but many fewer iterations
are required for complete minimization. NEWTON is usually the best choice for minimizations to the
0.01 to 0.000001 kcal/mole/= level of rms gradient convergence. Tests for directions of negative
curvature can be removed, allowing NEWTON to be used for optimization to conformational
transition state structures (this only works if the starting point is very close to the transition state).
Input consists of a TINKER . xyz coordinates file; output is an updated set of minimized coordinates
and minimization statistics.

NEWTROT

The NEWTROT program is similar to NEWTON except that it requires a . int file as input and then
operates in terms of dihedral angles as the minimization variables. Since the dihedral space Hessian
matrix of an arbitrary structure is often indefinite, this method will often not perform as well as the
other, simpler dihedral angle based minimizers.

OPTIMIZE

The OPTIMIZE program performs a optimally conditioned variable metric minimization of an input
structure over Cartesian coordinates using an algorithm due to William Davidon. The method does
not perform line searches, but requires computation of energies and gradients as well as storage for
an estimate of the inverse Hessian matrix. The program operates on Cartesian coordinates from a
TINKER .xyz file. OPTIMIZE will typically converge somewhat faster and more completely than
MINIMIZE. However, the need to store and manipulate a full inverse Hessian estimate limits its use to
structures containing less than a few hundred atoms on workstation class machines. As with the
other minimizers, OPTIMIZE needs input coordinates and an rms gradient cutoff criterion. The
output coordinates are saved in updated . xyz files or as cycle files.

OPTIROT

The OPTIROT program is similar to OPTIMIZE except that it operates on dihedral angles starting
from a TINKER . int internal coordinate file. This program is usually the preferred method for most
dihedral angle optimization problems since Truncated Newton methods appear, in our hands, to lose
some of their efficacy in moving from Cartesian to torsional coordinates.

OPTRIGID

The OPTRIGID program is similar to OPTIMIZE except that it operates on rigid bodies starting from a
TINKER .xyz coordinate file and the rigid body atom group definitions found in the corresponding
.key file. Output is saved in an updated . xyz file or in cycle files.

PATH

A program that implements a variant of Elber's Lagrangian multiplier-based reaction path following
algorithm. The program takes as input a pair of structural minima as TINKER . xyz files, and then
generates a user specified number of points along a path through conformational space connecting
the input structures. The intermediate structures are output as TINKER cycle files, and the higher

15 TINKER User's Guide 15

energy intermediates can be used as input to a Newton-based optimization to locate conformational
transition states.

PSS

Implements our version of a potential smoothing and search algorithm for the global optimization of
molecular conformation. An initial structure in .xyz format is first minimized in Cartesian
coordinates on a series of increasingly smoothed potential energy surfaces. Then the smoothing
procedure is reversed with minimization on each successive surface starting from the coordinates of
the minimum on the previous surface. A local search procedure is used during the backtracking to
explore for alternative minima better than the one found during the current minimization. The final
result is usually a very low energy conformation or, in favorable cases, the global energy minimum
conformation. The minimum energy coordinate sets found on each surface during both the forward
smoothing and backtracking procedures are placed in sequentially numbered cycle files.

PSSRIGID

This program implements the potential smoothing and search method as described above for the PSS
program, but performs the computation in terms of keyfile-defined rigid body atom groups instead of
Cartesian coordinates. Output is saved in numbered cycle files with the . xyz file format.

PSSROT

This program implements the potential smoothing and search method as described above for the PSS
program, but performs the computation in terms of a set of user-specified dihedral angles instead of
Cartesian coordinates. Output is saved in numbered cycle files with the . int file format.

SADDLE

A program for the location of a conformational transition state between two potential energy
minima. SADDLE uses a conglomeration of ideas from the Bell-Crighton quadratic path and the
Halgren-Lipscomb synchronous transit methods. The basic idea is to perform a nonlinear conjugate
gradient optimization in a subspace orthogonal to a suitably defined reaction coordinate. The
program requires as input the coordinates (TINKER .xyz files) of the two minima and an rms
gradient convergence criterion for the optimization. The current estimate of the transition state
structure is written to the file TSTATE.XYZ. Crude transition state structures generated by SADDLE
can sometimes be refined using the NEWTON program. Optionally, a scan of the interconversion
pathway can be made at each major iteration.

SCAN

A program for general conformational search of an entire potential energy surface via a basin
hopping method. The program takes as input a TINKER .xyz coordinates file which is then
minimized to find the first local minimum for a search list. A series of activations along various
normal modes from this initial minimum are used as seed points for additional minimizations.
Whenever a previously unknown local minimum is located it is added to the search list. When all
minima on the search list have been subjected to the normal mode activation without locating
additional new minima, the program terminates. The individual local minima are written to cycle
files as they are discovered. While the SCAN program can be used on standard undeformed potential
energy surfaces, we have found it to be most useful for quickly “scanning’" a smoothed energy
surface to enumerate the major basins of attraction spaning the entire surface.

16 TINKER User's Guide 16

SNIFFER

A program that implements the Sniffer global optimization algorithm of Butler and Slaminka, a
discrete version of Griewank's global search trajectory method. The program takes an input TINKER
.xyz coordinates file and shakes it vigorously via a modified dynamics trajectory before, hopefully,
settling into a low lying minimum. Some trial and error is often required as the current
implementation is sensitive to various parameters and tolerances that govern the computation. At
present, these parameters are not user accessible, and must be altered in the source code. However,
this method can do a good job of quickly optimizing conformation within a limited range of
convergence.

TESTGRAD

The TESTGRAD program computes and compares the analytical and numerical first derivatives (ie.,
the gradient vector) of the potential energy for a Cartesian coordinate input structure. The output
can be used to test or debug the current potential or any added user defined energy terms.

TESTHESS

The TESTHESS program computes and compares the analytical and numerical second derivatives
(ie., the Hessian matrix) of the potential energy for a Cartesian coordinate input structure. The
output can be used to test or debug the current potential or any added user defined energy terms.

TESTLIGHT

A program to compare the efficiency of different nonbonded neighbor methods for the current
molecular system. The program times the computation of energy and gradient for the van der Waals
and charge-charge electrostatic potential terms using a simple double loop over all interactions and
using the Method of Lights algorithm to select neighbors. The results can be used to decide whether
the Method of Lights has any CPU time advantage for the current structure. Both methods should give
exactly the same answer in all cases, since the identical individual interactions are computed by both
methods. The default double loop method is faster when cutoffs are not used, or when the cutoff
sphere contains about half or more of the total system of unit cell. In cases where the cutoff sphere is
much smaller than the system size, the Method of Lights can be much faster since it avoids
unnecessary calculation of distances beyond the cutoff range.

TESTROT

The TESTROT program computes and compares the analytical and numerical first derivatives (ie.,
the gradient vector) of the potential energy with respect to dihedral angles. Input is a TINKER . int
internal coordinate file. The output can be used to test or debug the current potential functions or
any added user defined energy terms.

TIMER

A simple program to provide timing statistics for energy function calls within the TINKER package.
TIMER requires an input .xyz file and outputs the CPU time (wall clock time on some machine
types) needed to perform a specified number of energy, gradient and Hessian evaluations.

TIMEROT

17 TINKER User's Guide 17

This program is similar to TIMER, only it operates over dihedral angles via input of a TINKER . int
internal coordinate file. In the current version, the torsional Hessian is computed numerically from
the analytical torsional gradient.

VIBRATE

A program to perform vibrational analysis by computing and diagonalizing the full Hessian matrix
(ie., the second partial derivatives) for an input structure (a TINKER .xyz file). Eigenvalues and
eigenvectors of the mass weighted Hessian (i.e., the vibrational frequencies and normal modes) are
also calculated. Structures corresponding to individual normal mode motions can be saved in cycle
files.

VIBROT

The program VIBROT forms the torsional Hessian matrix via numerical differentiation of the
analytical torsional gradient. The Hessian is then diagonalized and the eigenvalues are output. The
present version does not compute the kinetic energy matrix elements needed to convert the Hessian
into the torsional normal modes; this will be added in a later version. The required input is a TINKER
. int internal coordinate file.

XTALFIT

The XTALFIT program is of use in the automated fitting of potential parameters to crystal structure
and thermodynamic data. XTALFIT takes as input several crystal structures (TINKER . xyz files with
unit cell parameters in corresponding keyfiles) as well as information on lattice energies and dipole
moments of monomers. The current version uses a nonlinear least squares optimization to fit van der
Waals and electrostatic parameters to the input data. Bounds can be placed on the values of the
optimization parameters.

XTALMIN

A program to perform full crystal minimizations. The program takes as input the structure
coordinates and unit cell lattice parameters. It then alternates cycles of Newton-style optimization of
the structure and conjugate gradient optimization of the crystal lattice parameters. This alternating
minimization is slower than more direct optimization of all parameters at once, but is somewhat
more robust in our hands. The symmetry of the original crystal is not enforced, so interconversion of
crystal forms may be observed in some cases.

18 TINKER User's Guide 18

5. Additional Utility Programs & Scripts

This section of the manual contains a brief description of each of the TINKER structure manipulation,
geometric calculation and auxiliary programs. A detailed example showing how to run each program
is included in a later section. The programs listed below are all part of the main, supported
distribution. Additional source code for various unsupported programs can be found in the /other
directory of the TINKER distribution.

ARCHIVE

A program for concatenating TINKER cycle files into a single archive file; useful for storing the
intermediate results of minimizations, dynamics trajectories, and so on. The archive file can be
written in TINKER format, or in formats usable with MSI's Insightll (their CAR file with .msi
extension) or with XMakemol (their file format with .xmol extension). Only active atoms are written
into the Insightll and XMakemol output files, allowing display of partial structures. The program can
also extract individual cycle files from a TINKER archive.

CORRELATE

A program to compute time correlation functions from collections of TINKER cycle files. Its use
requires a user supplied function property that computes the value of the property for which a time
correlation is desired for two input structures. A sample routine is supplied that computes either a
velocity autocorrelation function or an rms structural superposition as a function of time. The main
body of the program organizes the overall computation in an efficient manner and outputs the final
time correlation function.

CRYSTAL

A program for the manipulation of crystal structures including interconversion of fractional and
Cartesian coordinates, generation of the unit cell from an asymmetric unit, and building of a
crystalline block of specified size via replication of a single unit cell. The present version can handle
about 25 of the most common space groups, others can easily be added as needed by modification of
the routine symmetry.

DIFFUSE

A program to compute the self-diffusion constant for a homogeneous liquid via the Einstein equation.
A previously saved dynamics trajectory is read in and “unfolded" to reverse translation of molecules
due to use of periodic boundary conditions. The average motion over all molecules is then used to
compute the self-diffusion constant. While the current program assumes a homogeneous system, it
should be easy to modify the code to handle diffusion of individual molecules or other desired effects.

DISTGEOM

A program to perform distance geometry calculations using variations on the classic metric matrix
method. A user specified number of structures consistent with keyfile input distance and dihedral
restraints is generated. Bond length and angle restraints are derived from the input structure. Trial
distances between the triangle smoothed lower and upper bounds can be chosen via any of several
metrization methods, including a very effective partial random pairwise scheme. The correct radius
of gyration of the structure is automatically maintained by choosing trial distances from Gaussian
distributions of appropriate mean and width. The initial embedded structures can be further refined

19 TINKER User's Guide 19

against a geometric restraint-only potential using either a sequential minimization protocol or
simulated annealing.

DOCUMENT

The DOCUMENT program is provided as a minimal listing and documentation tool. It operates on the
TINKER source code, either individual files or the complete source listing produced by the command
script 1isting.make, to generate lists of routines, common blocks or valid keywords. In addition,
the program has the ability to output a formatted parameter listing from the standard TINKER
parameter files.

INTEDIT

A program to allow interactive inspection and alteration of the internal coordinate definitions and
values of a TINKER structure. If the structure is altered, the user has the option to write out a new
internal coordinates file upon exit.

INTXYZ

A program to convert a TINKER .int internal coordinates formatted file into a TINKER .xyz
Cartesian coordinates formatted file.

NUCLEIC

A program for automated building of nucleic acid structures. Upon interactive input of a nucleotide
sequence with optional phosphate backbone angles, the program builds internal and Cartesian
coordinates. Standard bond lengths and angles are used. Both DNA and RNA sequences are
supported as are A-, B- and Z-form structures. Double helixes of complementary sequence can be
automatically constructed via a rigid docking of individual strands.

PDBXYZ

A program for converting a Brookhaven Protein Data Bank file (a PDB file) into a TINKER .xyz
Cartesian coordinate file. If the PDB file contains only protein/peptide amino acid residues, then
standard protein connectivity is assumed, and transferred to the .xyz file. For non-protein portions of
the PDB file, atom connectivity is determined by the program based on interatomic distances. The
program also has the ability to add or remove hydrogen atoms from a protein as required by the
force field specified during the computation.

POLARIZE

A program for computing molecular polarizability from an atom-based distributed model of
polarizability. A damped interaction model due to Thole is optionally via keyfile settings. A TINKER
.xyz file is required as input. The output consists of the overall polarizability tensor in the global
coordinates and its eigenvalues.

PRMEDIT

A program for formatting and renumbering TINKER force field parameter files. When atom types or
classes are added to a parameter file, this utility program has the ability to renumber all the atom
records sequentially, and alter type and class numbers in all other parameter entries to maintain
consistency.

20 TINKER User's Guide 20

PROTEIN

A program for automated building of peptide and protein structures. Upon interactive input of an
amino acid sequence with optional phi/psi/omega/chi angles, D/L chirality, etc., the program builds
internal and Cartesian coordinates. Standard bond lengths and angles are assumed for the peptide.
The program will optionally convert the structure to a cyclic peptide, or add either or both N- and C-
terminal capping groups. Atom type numbers are automatically assigned for the specified force field.
The final coordinates and a sequence file are produced as the output.

RADIAL

A program to compute the pair radial distribution function between two atom types. The user
supplies the two atom names for which the distribution function is to be computed, and the width of
the distance bins for data analysis. A previously saved dynamics trajectory is read as input. The raw
radial distribution and a spline smoothed version are then output from zero to a distance equal to
half the minimum periodic box dimension. The atom names are matched to the atom name column of
the TINKER .xyz file, independent of atom type.

SPACEFILL

A program to compute the volume and surface areas of molecules. Using a modified version of
Connolly's original analytical description of the molecular surface, the program determines either the
van der Waals, accessible or molecular (contact/reentrant) volume and surface area. Both surface
area and volume are broken down into their geometric components, and surface area is decomposed
into the convex contribution for each individual atom. The probe radius is input as a user option, and
atomic radii can be set via the keyword file. If TINKER archive files are used as input, the program
will compute the volume and surface area of each structure in the input file.

SPECTRUM

A program to compute a power spectrum from velocity autocorrelation data. As input, this program
requires a velocity autocorrelation function as produced by the CORRELATE program. This data,
along with a user input time step, are Fourier transformed to generate the spectral intensities over a
wavelength range. The result is a power spectrum, and the positions of the bands are those predicted
for an infrared or Raman spectrum. However, the data is not weighted by molecular dipole moment
derivatives as would be required to produce correct IR intensities.

SUPERPOSE

A program to superimpose two molecular structures in 3-dimensions. A variety of options for input
of the atom sets to be used during the superposition are presented interactively to the user. The
superposition can be mass-weighted if desired, and the coordinates of the second structure
superimposed on the first structure are optionally output. If TINKER archive files are used as input,
the program will compute all pairwise superpositions between structures in the input files.

SYBYLXYZ

A program for converting a TRIPOS Sybyl MOL2 file into a TINKER .xyz Cartesian coordinate file.
The current version of the program does not attempt to convert the Sybyl atoms types into the active
TINKER force field types, i.e., all atoms types are simply set to zero.

21 TINKER User's Guide 21

XYZEDIT

A program that performs and of a variety of manipulations on an input TINKER .xyz Cartesian
coordinates formatted file. The present version of the program has the following interactively
selectable options: (1) Offset the Numbers of the Current Atoms, (2) Deletion of Individual Specified
Atoms, (3) Deletion of Specified Types of Atoms, (4) Deletion of Atoms outside Cutoff Range, (5)
Insertion of Individual Specified Atoms, (6) Replace Old Atom Type with a New Type, (7) Assign
Connectivities based on Distance, (8) Convert Units from Bohrs to Angstroms, (9) Invert thru Origin
to give Mirror Image, (10) Translate Center of Mass to the Origin, (11) Translate a Specified Atom to
the Origin, (12) Translate and Rotate to Inertial Frame, (13) Move to Specified Rigid Body
Coordinates, (14) Create and Fill a Periodic Boundary Box, (15) Soak Current Molecule in Box of
Solvent, (16) Append another XYZ file to Current One. In most cases, multiply options can be applied
sequentially to an input file. At the end of the editing process, a new version of the original . xyz file
is written as output.

XYZINT

A program for converting a TINKER .xyz Cartesian coordinate formatted file into a TINKER .int
internal coordinates formatted file. This program can optionally use an existing internal coordinates
file as a template for the connectivity information.

XYZPDB

A program for converting a TINKER .xyz Cartesian coordinate file into a Brookhaven Protein Data
Bank file (a PDB file).

XYZSYBYL

A program to convert a TINKER .xyz Cartesian coordinates file into a TRIPOS Sybyl MOL?2 file. The
conversion generates only the MOLECULE, ATOM, BOND and SUBSTRUCTURE record type in the
MOL2 file. Generic Sybyl atom types are used in most cases; while these atom types may need to be
altered in some cases, Sybyl is usually able to correctly display the resulting MOL?2 file.

22 TINKER User's Guide 22

6. Special Features & Methods

This section contains several short notes with further information about TINKER methodology,
algorithms and special features. The discussion is not intended to be exhaustive, but rather to explain
features and capabilities so that users can make more complete use of the package.

File Version Numbers

All of the input and output file types routinely used by the TINKER package are capable of existing as
multiple versions of a base file name. For example, if the program XYZINT is run on the input file
molecule.xyz, the output internal coordinates file will be written to molecule. int. If a file
named molecule. int is already present prior to running XYZINT, then the output will be written
instead to the next available version, in this case tomolecule. int_2. In fact the output is generally
written to the lowest available, previously unused version number (molecule.int_3,
molecule.int_4, etc, as high as needed). Input file names are handled similarly. If simply
molecule or molecule.xyz is entered as the input file name upon running XYZINT, then the
highest version of molecule.xyz will be used as the actual input file. If an explicit version number
is entered as part of the input file name, then the specified version will be used as the input file.

The version number scheme will be recognized by many older users as a holdover from the VMS
origins of the first version of the TINKER software. It has been maintained to make it easier to chain
together multiple calculations that may create several new versions of a given file, and to make it
more difficult to accidently overwrite a needed result. The version scheme applies to most uses of
many common TINKER file types such as .xyz, .int, .key, .arc. It is not used when an
overwritten file “update" is obviously the correct action, for example, the .dyn molecular dynamics
restart files. For those users who prefer a more Unix-like operation, and do not desire use of file
versions, this feature can be turned off by adding the NOVERSION keyword to the applicable TINKER
keyfile.

The version scheme as implemented in TINKER does have two known quirks. First, it becomes
impossible to directly use the original unversioned copy of a file if higher version numbers are
present. For example, if the files molecule.xyz and molecule.xyz_2 both exist, then
molecule.xyz cannot be accessed as input by XYZINT. [f molecule.xyz is entered in response to
the input file name question, molecule.xyz_2 (or the highest present version number) will be
used as input. The only workaround is to copy or rename molecule.xyz to something else, say
molecule.new, and use that name for the input file. Secondly, missing version numbers always end
the search for the highest available version number; ie., version numbers are assumed to be
consecutive and without gaps. For example, if molecule.xyz, molecule.xyz_ 2 and
molecule.xyz_4 are present, but notmolecule.xyz_3,thenmolecule.xyz_2 will be used as
input to XYZINT if molecule is given as the input file name. Similarly, output files will fill in gaps in
an already existing set of file versions.

Command Line Options

Many operating systems or compiler supplied-libraries make available something like the standard
Unix iargc and getarg routines for capturing command line arguments. On these machines most of
the TINKER programs support a selection of command line arguments and options. The name of the
keyfile to be used for a calculation is read from the argument following a -k (equivalent to either -
key or -keyfile, case insensitive) command line argument. Note that the -k options can appear
anywhere on the command line following the executable name. All other command line arguments,
excepting the name of the executable program itself, are treated as input arguments. These input

23 TINKER User's Guide 23

arguments are read from left to right and interpreted in order as the answers to questions that would
be asked by an interactive invocation of the same TINKER program. For example, the following
command line:

newton molecule -k test a a 0.01

will invoke the NEWTON program on the structure file molecule. xyz using the keyfile test.key,
automatic mode [a] for both the method and preconditioning, and 0.01 for the RMS gradient per
atom termination criterion in kcal/mole/=. Provided that the force field parameter set, etc. is
provided in test.key, the above compuation will procede directly from the command line
invocation without further interactive input.

Use on Microsoft Windows Systems

TINKER executables for Microsoft PC systems should be run from the DOS or Command Prompt
window available under the various versions of Windows. The TINKER executable directory should
be added to your path via the autoexec.bat file or similar. If using Win2000 or XP, set the number of
scrollable lines in the Command Prompt window to a very large number, so that you will be able to
inspect screen output after it flies by. With Win95/98, these Command Prompt windows are only
able to scroll a small number of lines (amazing!), so TINKER programs which generate large amounts
of screen output should be run such that output will be redirected to a file. This can be accomplished
by running the TINKER program in batch mode or by using the Unix-like output redirection build
into DOS. For example, the command:

dynamic < molecule.inp > molecule.log

will run the TINKER dynamic program taking input from the file molecule. inp and sending output
to molecule.log. Also note that command line options as described above are available with the
distributed TINKER executables.

Another alternative, particularly attractive to those already familiar with Linux or Unix systems, is to
download the Cygwin package currently available under GPL license from the site
http://source.redhat.com/cygwin/. The cygwin tools provide many of the GNU tools,
including a bash shell window from which TINKER programs can be run.

If the distributed TINKER executables are run directly from Windows by double clicking on the
program icon, then the program will run in its own window. However, upon completion of the
program the window will close and screen output will be lost. Any output files written by the
program will, of course, still be available. The Windows behavior can be changed by adding the EXIT-
PAUSE keyword to the keyfile. This keyword causes the executation window to remain open after
completion until the “Enter" key is pressed.

Use on Apple Macintosh Systems

The TINKER executables are best run under Mac OS X in a “terminal" application window where
behavior is identical to that in a Linux terminal. At present the Force Field Explorer GUI for TINKER
will not run on OS X since the required Java3D extensions are unavailable.

We have discontinued active support for Mac 0OS 9. However, the OS 9 versions of TINKER are run by
double clicking on a program icon. The program will run in its own window to which all “screen"
output will be directed. Upon program termination the window will remain active pending a final
return entered by the user which will close the window. Prior to the final return, the contents of the
screen window can be saved to a file via the clipboard for permanent storage. Note that Macintosh

24 TINKER User's Guide 24

0S9 uses a colon instead of a forward- or back-slash as the directory separator, so keyfiles transfered
from other machines will need to be altered accordingly.

Atom Types vs. Atom Classes

Manipulation of atom types and the proliferation of parameters as atoms are further subdivided into
new types is the bane of force field calculation. For example, if each topologically distinct atom
arising from the 20 natural amino acids is given a different atom type, then about 300 separate type
are required (this ignores the different N- and C-terminal forms of the residues, diastereotopic
hydrogens, etc.). However, all these types lead to literally thousands of different force field
parameters. In fact, there are many thousands of distinct torsional parameters alone. It is impossible
at present to fully optimize each of these parameters; and even if we could, a great many of the
parameters would be nearly identical. Two somewhat complimentary solutions are available to
handle the proliferation of parameters. The first is to specify the molecular fragments to which a
given parameter can be applied in terms of a chemical structure language, SMILES strings for
example. Some commercial systems, such as the TRIPOS Sybyl software, make use of such a scheme
to parse structures and assign force field parameters.

A second general approach is to use hierarchical cascades of parameter groups. TINKER uses a
simple version of this scheme. Each TINKER force field atom has both an atom type number and an
atom class number. The types are subsets of the atom classes, ie., several different atom types can
belong to the same atom class. Force field parameters that are somewhat less sensitive to local
environment, such as local geometry terms, are then provided and assigned based on atom class.
Other energy parameters, such as electrostatic parameters, that are very environment dependent are
assigned over the atom types. This greatly reduces the number of independent multiple-atom
parameters like the four-atom torsional parameters.

Calculations on Partial Structures

Two methods are available for performing energetic calculations on portions or substructures within
a full molecular system. TINKER allows division of the entire system into active and inactive parts
which can be defined via keywords. In subsequent calculations, such as minimization or dynamics,
only the active portions of the system are allowed to move. The force field engine responds to the
active/inactive division by computing all energetic interactions involving at least one active atom; i.e.,
any interaction whose energy can change with the motion of one or more active atoms is computed.

The second method for partial structure computation involves dividing the original system into a set
of atom groups. As before, the groups can be specified via appropriate keywords. The current TINKER
implementation allows specification of up to a maximum number of groups as given in the sizes.i
dimensioning file. The groups must be disjoint in that no atom can belong to more than one group.
Further keywords allow the user to specify which intra- and intergroup sets of energetic interactions
will contribute to the total force field energy. Weights for each set of interactions in the total energy
can also be input. A specific energetic interaction is assigned to a particular intra- or intergroup set if
all the atoms involved in the interaction belong to the group (intra-) or pair of groups (inter-).
Interactions involving atoms from more than two groups are not computed.

Note that the groups method and active/inactive method use different assignment procedures for
individual interactions. The active/inactive scheme is intended for situations where only a portion of
a system is allowed to move, but the total energy needs to reflect the presence of the remaining
inactive portion of the structure. The groups method is intended for use in rigid body calculations,
and is needed for certain kinds of free energy perturbation calculations.

Metal Complexes and Hypervalent Species

25 TINKER User's Guide 25

The distribution version of TINKER comes dimensioned for a maximum atomic coordination number
of four as needed for standard organic compounds. In order to use TINKER for calculations on
species containing higher coordination numbers, simply change the value of the parameter maxval
in the master dimensioning file sizes.i and rebuilt the package. Note that this parameter value
should not be set larger than necessary since large values can slow the execution of portions of some
TINKER programs.

Many molecular mechanics approaches to inorganic and metal structures use an angle bending term
which is softer than the usual harmonic bending potential. TINKER implements a Fourier bending
term similar to that used by the Landis group's SHAPES force field. The parameters for specific
Fourier angle terms are supplied via the ANGLEF parameter and keyword format. Note that a Fourier
term will only be used for a particular angle if a corresponding harmonic angle term is not present in
the parameter file.

We are now collaborating with Anders Carlsson's group in St. Louis to add his transition metal ligand
field term to TINKER. Support for this additional potential functional form is already in the TINKER
source code, and we plan to release the energy routines after further testing and parameterization.

Neighbor Methods for Nonbonded Terms

In addition to standard double loop methods, the Method of Lights is available to speed neighbor
searching. This method based on taking intersections of sorted atom lists can be much faster for
problems where the cutoff distance is significantly smaller than half the maximal cell dimension. The
current version of TINKER does not implement the “neighbor list" schemes common to many other
simulation packages.

Periodic Boundary Conditions

Both spherical cutoff images or replicates of a cell are supported by all TINKER programs that
implement periodic boundary conditions. Whenever the cutoff distance is too large for the minimum
image to be the only relevant neighbor (ie., half the minimum box dimension for orthogonal cells),
TINKER will automatically switch from the image formalism to use of replicated cells.

Distance Cutoffs for Energy Functions

Polynomial energy switching over a window is used for terms whose energy is small near the cutoff
distance. For monopole electrostatic interactions, which are quite large in typical cutoff ranges, a two
polynomial multiplicative-additive shifted energy switch unique to TINKER is applied. The TINKER
method is similar in spirit to the force switching methods of Steinbach and Brooks, J. Comput. Chem.,
15, 667-683 (1994). While the particle mesh Ewald method is preferred when periodic boundary
conditions are present, TINKER's shifted energy switch with reasonable switching windows is quite
satisfactory for most routine modeling problems. The shifted energy switch minimizes the
perturbation of the energy and the gradient at the cutoff to acceptable levels. Problems should arise
only if the property you wish to monitor is known to require explicit inclusion of long range
components (ie., calculation of the dielectric constant, etc.).

Ewald Summations Methods

TINKER contains a versions of the Ewald summation technique for inclusion of long range
electrostatic interactions via periodic boundaries. The particle mesh Ewald (PME) method is
available for simple charge-charge potentials, while regular Ewald is provided for polarizable atomic
multipole interactions. The accuracy and speed of the regular and PME calculations is dependent on

26 TINKER User's Guide 26

several interrelated parameters. For both methods, the Ewald coefficient and real-space cutoff
distance must be set to reasonable and complementary values. Additional control variables for
regular Ewald are the fractional coverage and number of vectors used in reciprocal space. For PME
the additional control values are the B-spline order and charge grid dimensions. Complete control
over all of these parameters is available via the TINKER keyfile mechanism. By default TINKER will
select a set of parameters which provide a reasonable compromise between accuracy and speed, but
these should be checked and modified as necessary for each individual system.

Continuum Solvation Models

Several alternative continuum solvation algorithms are contained within TINKER. All of these are
accessed via the SOLVATE keyword and its modifiers. Two simple surface area methods are
implemented: the ASP method of Eisenberg and McLachlan, and the SASA method from Scheraga's
group. These methods are applicable to any of the standard TINKER force fields. Various schemes
based on the generalized Born formalism are also available: the original 1990 numerical “Onion-
shell” GB/SA method from Still's group, the 1997 analytical GB/SA method also due to Still, a
pairwise descreening algorithm originally proposed by Hawkins, Cramer and Truhlar, and the
analytical continuum solvation (ACE) method of Schaefer and Karplus. At present, the generalized
Born methods should only be used with force fields having simple partial charge electrostatic
interactions.

Some further comments are in order regarding the GB/SA-style solvation models. The “~Onion-shell"
model is provided mostly for comparison purposes. It uses an exact, analytical surface area
calculation for the cavity term and the numerical scheme described in the original paper for the
polarization term. This method is very slow, especially for large systems, and does not contain the
contribution of the Born radii chain rule term to the first derivatives. We recommend its use only for
single-point energy calculations. The other GB/SA methods (Tanalytical" Still, H-C-T pairwise
descreening, and ACE) use an approximate cavity term based on Born radii, and do contain fully
correct derivatives including the Born radii chain rule contribution. These methods all scale in CPU
time with the square of the size of the system, and can be used with minimization, molecular
dynamics and large molecules.

Finally, we note that the ACE solvation model should not be used with the current version of TINKER.
The algorithm is fully implemented in the source code, but parameterization is not complete. As of
late 2000, parameter values are only available in the literature for use of ACE with the older
CHARMM19 force field. We plan to develop values for use with more modern all-atom force fields,
and these will be incorporated into TINKER sometime in the future.

Polarizable Multipole Electrostatics

Atomic multipole electrostatics through the quadrupole moment is supported by the current version
of TINKER, as is either mutual or direct dipole polarization. Ewald summation is available for
inclusion of long range interactions. Calculations are implemented via a mixture of the CCP5
algorithms of W. Smith and the Applequist-Dykstra Cartesian polytensor method. At present
analytical energy and Cartesian gradient code is provided.

The TINKER package allows intramolecular polarization to be treated via a version of the interaction
damping scheme of Thole. To implement the Thole scheme, it is necessary to set all the mutual-1x-
scale keywords to a value of one. The other polarization scaling keyword series, direct-1x-
scale and polar-1x-scale, can be set independently to enable a wide variety of polarization
models. In order to use an Applequist-style model without polarization damping, simply set the
polar-damp keyword to zero.

27 TINKER User's Guide 27

Potential Energy Smoothing

Versions of our Potential Smoothing and Search (PSS) methodology have been implemented within
TINKER. This methods belong to the same general family as Scheraga's Diffusion Equation Method,
Straub's Gaussian Density Annealing, Shalloway's Packet Annealing and Verschelde's Effective
Diffused Potential, but our algorithms reflect our own ongoing research in this area. In many ways
the TINKER potential smoothing methods are the deterministic analog of stochastic simulated
annealing. The PSS algorithms are very powerful, but are relatively new and are still undergoing
modification, testing and calibration within our research group. This version of TINKER also includes
a basin-hopping conformational scanning algorithm in the program SCAN which is particularly
effective on smoothed potential surfaces.

Distance Geometry Metrization

A much improved and very fast random pairwise metrization scheme is available which allows good
sampling during trial distance matrix generation without the usual structural anomalies and CPU
constraints of other metrization procedures. An outline of the methodology and its application to
NMR NOE-based structure refinement is described in the paper by Hodsdon, et al. in J. Mol. Biol.,, 264,
585-602 (1996). We have obtained good results with something like the keyword phrase trial-
distribution pairwise 5, which performs 5% partial random pairwise metrization. For
structures over several hundred atoms, a value less than 5 for the percentage of metrization should
be fine.

28 TINKER User's Guide 28

7. Use of the Keyword Control File

Using Keywords to Control TINKER Calculations

This section contains a description of the over 300 keyword parameters which may be used to define
or alter the course of a TINKER calculation. The keyword control file is optional in the sense that all
of the TINKER programs will run in the absence of a keyfile and will simply use default values or
query the user for needed information. However, the keywords allow use of a wide variety of
algorithmic and procedural options, many of which are unavailable interactively.

Keywords are read from the keyword control file. All programs look first for a keyfile with the same
base name as the input molecular system and ending in the extension . key. If this file does not exist,
then TINKER tries to use a generic keyfile with the name tinker.key and located in the same
directory as the input system. If neither a system-specific nor a generic keyfile is present, TINKER
will continue by using default values for keyword options and asking interactive questions as
necessary.

TINKER searches the keyfile during the course of a calculation for relevant keywords that may be
present. All keywords must appear as the first word on the line. Any blank space to the left of the
keyword 1is ignored, and all contents of the keyfiles are case insensitive. Some keywords take
modifiers; i.e.,, TINKER looks further on the same line for additional information, such as the value of
some parameter related to the keyword. Modifier information is read in free format, but must be
completely contained on the same line as the original keyword. Any lines contained in the keyfile
which do not qualify as valid keyword lines are treated as comments and are simply ignored.

Several keywords take a list of integer values (atom numbers, for example) as modifiers. For these
keywords the integers can simply be listed explicitly and separated by spaces, commas or tabs. If a
range of numbers is desired, it can be specified by listing the negative of the first number of the
range, followed by a separator and the last number of the range. For example, the keyword line
ACTIVE 4 -9 17 23 could be used to add atoms 4, 9 through 17, and 23 to the set of active atoms
during a TINKER calculation.

Keywords Grouped by Functionality
Listed below are the available TINKER keywords sorted into groups by general function. The section
ends with an alphabetical list containing each individual keyword, along with a brief description of its

action, possible keyword modifiers, and usage examples.

OUTPUT CONTROL KEYWORDS

ARCHIVE DEBUG DIGITS

ECHO EXIT-PAUSE NOVERSION
OVERWRITE PRINTOUT SAVE-CYCLE
SAVE-FORCE SAVE-INDUCED SAVE-VELOCITY
VERBOSE WRITEOUT

FORCE FIELD SELECTION KEYWORDS
FORCEFIELD PARAMETERS

POTENTIAL FUNCTION SELECTION KEYWORDS

29 TINKER User's Guide 29

ANGANGTERM
CHARGETERM
EXTRATERM
METALTERM
OPDISTTERM
RESTRAINTERM
STRBNDTERM
TORTORTERM

ANGLETERM
CHGDPLTERM
IMPROPTERM
MPOLETERM
PITORSTERM
RXNFIELDTERM
STRTORTERM
UREYTERM

POTENTIAL FUNCTION PARAMETER KEYWORDS

ANGANG
ANGLE4
ATOM
BOND3
CHARGE
DIPOLE4
HBOND
METAL
OPDIST
PITORS
STRBND
TORSION4
UREYBRAD
VDWPR

ANGLE
ANGLES
BIOTYPE
BOND4
DIPOLE
DIPOLES
IMPROPER
MULTIPOLE
PIATOM
POLARIZE
STRTORS
TORSIONS
VDW

ENERGY UNIT CONVERSION KEYWORDS

ANGLEUNIT
ELECTRIC
OPBENDUNIT
STRBNDUNIT
TORTORUNIT

ANGANGUNIT
IMPROPUNIT
OPDISTUNIT
STRTORUNIT
UREYUNIT

LOCAL GEOMETRY FUNCTIONAL FORM KEYWORDS

ANGLE-CUBIC
ANGLE-SEXTIC
BONDTYPE
UREY-CUBIC

ANGLE-QUARTIC
BOND-CUBIC
MM2-STRBND
UREY-QUARTIC

VAN DER WAALS FUNCTIONAL FORM KEYWORDS

A-EXPTERM
DELTA-HALGREN
GAUSSTYPE
RADIUSTYPE
VDW-14-SCALE
VDWINDEX

B-EXPTERM
EPSILONRULE
RADIUSRULE
VDW-12-SCALE
VDW-15-SCALE
VDWTYPE

ELECTROSTATICS FUNCTIONAL FORM KEYWORDS

CHG-12-SCALE

CHG-13-SCALE

BONDTERM
DIPOLETERM
IMPTORSTERM
OPBENDTERM
POLARIZETERM
SOLVATETERM
TORSIONTERM
VDWTERM

ANGLE3
ANGLEF
BOND
BOND5
DIPOLE3
ELECTNEG
IMPTORS
OPBEND
PIBOND
SOLVATE
TORSION
TORTOR
VDW14

BONDUNIT
IMPTORUNIT
PITORSUNIT
TORSIONUNIT

ANGLE-PENTIC
BOND-QUARTIC
PISYSTEM

C-EXPTERM
GAMMA-HALGREN
RADIUSSIZE
VDW-13-SCALE
VDW-CORRECTION

CHG-14-SCALE

30

TINKER User's Guide

30

CHG-15-SCALE
DIRECT-11-SCALE
DIRECT-14-SCALE
MPOLE-14-SCALE
MUTUAL-12-SCALE
POLAR-12-SCALE
POLAR-15-SCALE
POLAR-SOR

NONBONDED CUTOFF KEYWORDS

CHG-CUTOFF
DPL-CUTOFF
LIGHTS
NEIGHBOR-GROUPS
TAPER
VDW-TAPER

EWALD SUMMATION KEYWORDS

EWALD
EWALD-CUTOFF

CHG-BUFFER
DIRECT-12-SCALE
MPOLE-12-SCALE
MPOLE-15-SCALE
MUTUAL-13-SCALE
POLAR-13-SCALE
POLAR-ASPC
POLARIZATION

CHG-TAPER
DPL-TAPER
MPOLE-CUTOFF
NEUTRAL-GROUPS
TRUNCATE

EWALD-ALPHA
PME-GRID

CRYSTAL LATTICE & PERIODIC BOUNDARY KEYWORDS

A-AXIS
ALPHA
NO-SYMMETRY
X-AXIS

NEIGHBOR LIST KEYWORDS

CHG-LIST
NEIGHBOR-LIST

OPTIMIZATION KEYWORDS

ANGMAX
HGUESS
MAXITER
SLOPEMAX
STEPMIN

B-AXIS

BETA
OCTAHEDRON
Y-AXIS

LIST-BUFFER
VDW-LIST

CAPPA

INTMAX

NEWHESS
STEEPEST-DESCENT

MOLECULAR DYNAMICS KEYWORDS

BEEMAN-MIXING
REMOVE-INERTIA

DEGREES-FREEDOM

THERMOSTAT & BAROSTAT KEYWORDS

ANISO-PRESSURE
COMPRESS
TAU-PRESSURE

BAROSTAT
FRICTION
TAU-TEMPERATURE

DIELECTRIC
DIRECT-13-SCALE
MPOLE-13-SCALE
MUTUAL-11-SCALE
MUTUAL-14-SCALE
POLAR-14-SCALE
POLAR-EPS
REACTIONFIELD

CUTOFF
HESS-CUTOFF
MPOLE-TAPER
POLYMER-CUTOFF
VDW-CUTOFF

EWALD-BOUNDARY
PME-ORDER

C-AXIS
GAMMA
SPACEGROUP
Z-AXIS

MPOLE-LIST

FCTMIN
LBFGS-VECTORS
NEXTITER
STEPMAX

INTEGRATOR

COLLISION
FRICTION-SCALING
THERMOSTAT

31

TINKER User's Guide

31

VOLUME-MOVE VOLUME-SCALE
TRANSITION STATE KEYWORDS

DIVERGE
SADDLEPOINT

GAMMAMIN

DISTANCE GEOMETRY KEYWORDS
TRIAL-DISTANCE TRIAL-DISTRIBUTION
VIBRATIONAL ANALYSIS KEYWORDS

IDUMP VIB-ROOTS
IMPLICIT SOLVATION KEYWORDS

BORN-RADIUS GK-RADIUS
GKR SOLVENT-PRESSURE

POISSON-BOLTZMANN KEYWORDS

AGRID APBS-GRID
CGCENT CGRID
FGRID ION
MG-MANUAL PB-RADIUS
SDENS SDIE

SRAD SRFM

MATHEMATICAL ALGORITHM KEYWORDS
FFT-PACKAGE RANDOMSEED
PARALLELIZATION KEYWORDS
OPENMP-THREADS

FREE ENERGY PERTURBATION KEYWORDS

CHG-LAMBDA DPL-LAMBDA
LIGAND MPOLE-LAMBDA
POLAR-LAMBDA VDW-LAMBDA

PARTIAL STRUCTURE KEYWORDS

ACTIVE GROUP
GROUP-INTRA GROUP-MOLECULE
INACTIVE

CONSTRAINT & RESTRAINT KEYWORDS

BASIN
RATTLE-DISTANCE
RATTLE-ORIGIN

ENFORCE-CHIRALITY
RATTLE-EPS
RATTLE-PLANE

VOLUME-TRIAL

REDUCE

VIB-TOLERANCE

GKC
SURFACE-TENSION

BCFL
FGCENT
MG-AUTO
PDIE
SMIN
SWIN

LAMBDA
MUTATE

GROUP-INTER
GROUP-SELECT

RATTLE
RATTLE-LINE
RESTRAIN-ANGLE

32 TINKER User's Guide

32

RESTRAIN-DISTANCE
RESTRAIN-TORSION

PARAMETER FITTING KEYWORDS

FIT-ANGLE
FIT-STRBND
FIX-ANGLE
FIX-MONOPOLE
FIX-STRBND
POTENTIAL-ATOMS
POTENTIAL-SHELLS

TARGET-QUADRUPOLE

RESTRAIN-GROUPS
SPHERE

FIT-BOND
FIT-TORSION
FIX-BOND
FIX-OPBEND
FIX-TORSION
POTENTIAL-FIT
POTENTIAL-SPACING

POTENTIAL SMOOTHING KEYWORDS

DEFORM
DIFFUSE-VDW

DIFFUSE-CHARGE
SMOOTHING

RESTRAIN-POSITION
WALL

FIT-OPBEND
FIT-UREY
FIX-DIPOLE
FIX-QUADRUPOLE
FIX-UREY
POTENTIAL-OFFSET
TARGET-DIPOLE

DIFFUSE-TORSION

Description of Individual Keywords

The following is an alphabetical list of the TINKER keywords along with a brief description of the
action of each keyword and required or optional parameters that can be used to extend or modify
each keyword. The format of possible modifiers, if any, is shown in brackets following each keyword.

A-AXIS [real] Sets the value of the a-axis length for a crystal unit cell, or, equivalently, the X-axis
length for a periodic box. The length value in Angstroms is listed after the keyword.

A-EXPTERM [real] Sets the value of the A" premultiplier term in the Buckingham van der Waals
function, i.e, the value of A in the formula E 4, = € { A exp[-B(R,/R)] - C (RO/R)6 }

ACTIVE [integer list] Sets the list of active atoms during a TINKER computation. Individual
potential energy terms are computed when at least one atom involved in the term is active. For
Cartesian space calculations, active atoms are those allowed to move. For torsional space
calculations, rotations are allowed when all atoms on one side of the rotated bond are active. Multiple
ACTIVE lines can be present in the keyfile and are treated cumulatively. On each line the keyword
can be followed by one or more atom numbers or atom ranges. The presence of any ACTIVE keyword
overrides any INACTIVE keywords in the keyfile.

ALPHA [real] Sets the value of the a angle of a crystal unit cell, i.e., the angle between the b-axis
and c-axis of a unit cell, or, equivalently, the angle between the Y-axis and Z-axis of a periodic box.
The default value in the absence of the ALPHA keyword is 90 degrees.

ANGANG [1 integer & 3 reals] This keyword provides the values for a single angle-angle cross
term potential parameter.

ANGANGTERM [NONE/ONLY] This keyword controls use of the angle-angle cross term potential
energy. In the absence of a modifying option, this keyword turns on use of the potential. The NONE
option turns off use of this potential energy term. The ONLY option turns off all potential energy
terms except for this one.

33 TINKER User's Guide 33

ANGANGUNIT [real] Sets the scale factor needed to convert the energy value computed by the
angle-angle cross term potential into units of kcal/mole. The correct value is force field dependent
and typically provided in the header of the master force field parameter file. The default of (r/180)2
= 0.0003046 is used, if the ANGANGUNIT keyword is not given in the force field parameter file or the
keyfile.

ANGLE [3 integers & 4 reals] This keyword provides the values for a single bond angle bending
parameter. The integer modifiers give the atom class numbers for the three kinds of atoms involved
in the angle which is to be defined. The real number modifiers give the force constant value for the
angle and up to three ideal bond angles in degrees. In most cases only one ideal bond angle is given,
and that value is used for all occurrences of the specified bond angle. If all three ideal angles are
given, the values apply when the central atom of the angle is attached to 0, 1 or 2 additional hydrogen
atoms, respectively. This “hydrogen environment" option is provided to implement the
corresponding feature of Allinger's MM force fields. The default units for the force constant are
kcal/mole/radian?, but this can be controlled via the ANGLEUNIT keyword.

ANGLE-CUBIC [real] Sets the value of the cubic term in the Taylor series expansion form of the
bond angle bending potential energy. The real number modifier gives the value of the coefficient as a
multiple of the quadratic coefficient. This term multiplied by the angle bending energy unit
conversion factor, the force constant, and the cube of the deviation of the bond angle from its ideal
value gives the cubic contribution to the angle bending energy. The default value in the absence of
the ANGLE-CUBIC keyword is zero; i.e,, the cubic angle bending term is omitted.

ANGLE-PENTIC [real] Sets the value of the fifth power term in the Taylor series expansion form of
the bond angle bending potential energy. The real number modifier gives the value of the coefficient
as a multiple of the quadratic coefficient. This term multiplied by the angle bending energy unit
conversion factor, the force constant, and the fifth power of the deviation of the bond angle from its
ideal value gives the pentic contribution to the angle bending energy. The default value in the
absence of the ANGLE-PENTIC keyword is zero; ie., the pentic angle bending term is omitted.

ANGLE-QUARTIC [real] Sets the value of the quartic term in the Taylor series expansion form of
the bond angle bending potential energy. The real number modifier gives the value of the coefficient
as a multiple of the quadratic coefficient. This term multiplied by the angle bending energy unit
conversion factor, the force constant, and the forth power of the deviation of the bond angle from its
ideal value gives the quartic contribution to the angle bending energy. The default value in the
absence of the ANGLE-QUARTIC keyword is zero; i.e,, the quartic angle bending term is omitted.

ANGLE-SEXTIC [real] Sets the value of the sixth power term in the Taylor series expansion form of
the bond angle bending potential energy. The real number modifier gives the value of the coefficient
as a multiple of the quadratic coefficient. This term multiplied by the angle bending energy unit
conversion factor, the force constant, and the sixth power of the deviation of the bond angle from its
ideal value gives the sextic contribution to the angle bending energy. The default value in the absence
of the ANGLE-SEXTIC keyword is zero; i.e, the sextic angle bending term is omitted.

ANGLE3 [3 integers & 4 reals] This keyword provides the values for a single bond angle bending
parameter specific to atoms in 3-membered rings. The integer modifiers give the atom class numbers
for the three kinds of atoms involved in the angle which is to be defined. The real number modifiers
give the force constant value for the angle and up to three ideal bond angles in degrees. If all three
ideal angles are given, the values apply when the central atom of the angle is attached to 0, 1 or 2
additional hydrogen atoms, respectively. The default units for the force constant are
kcal/mole/radian?, but this can be controlled via the ANGLEUNIT keyword. If any ANGLE3 keywords
are present, either in the master force field parameter file or the keyfile, then TINKER requires that

34 TINKER User's Guide 34

special ANGLE3 parameters be given for all angles in 3-membered rings. In the absence of any
ANGLE3 keywords, standard ANGLE parameters will be used for bonds in 3-membered rings.

ANGLE4 [3 integers & 4 reals] This keyword provides the values for a single bond angle bending
parameter specific to atoms in 4-membered rings. The integer modifiers give the atom class numbers
for the three kinds of atoms involved in the angle which is to be defined. The real number modifiers
give the force constant value for the angle and up to three ideal bond angles in degrees. If all three
ideal angles are given, the values apply when the central atom of the angle is attached to 0, 1 or 2
additional hydrogen atoms, respectively. The default units for the force constant are
kcal/mole/radian?, but this can be controlled via the ANGLEUNIT keyword. If any ANGLE4 keywords
are present, either in the master force field parameter file or the keyfile, then TINKER requires that
special ANGLE4 parameters be given for all angles in 4-membered rings. In the absence of any
ANGLE4 keywords, standard ANGLE parameters will be used for bonds in 4-membered rings.

ANGLES [3 integers & 4 reals] This keyword provides the values for a single bond angle bending
parameter specific to atoms in 5-membered rings. The integer modifiers give the atom class numbers
for the three kinds of atoms involved in the angle which is to be defined. The real number modifiers
give the force constant value for the angle and up to three ideal bond angles in degrees. If all three
ideal angles are given, the values apply when the central atom of the angle is attached to 0, 1 or 2
additional hydrogen atoms, respectively. The default units for the force constant are
kcal/mole/radian?, but this can be controlled via the ANGLEUNIT keyword. If any ANGLE5 keywords
are present, either in the master force field parameter file or the keyfile, then TINKER requires that
special ANGLE5 parameters be given for all angles in 5-membered rings. In the absence of any
ANGLES keywords, standard ANGLE parameters will be used for bonds in 5-membered rings.

ANGLEF [3 integers & 3 reals] This keyword provides the values for a single bond angle bending
parameter for a SHAPES-style Fourier potential function. The integer modifiers give the atom class
numbers for the three kinds of atoms involved in the angle which is to be defined. The real number
modifiers give the force constant value for the angle, the angle shift in degrees, and the periodicity
value. Note that the force constant should be given as the “harmonic" value and not the native
Fourier value. The default units for the force constant are kcal/mole/radian?, but this can be
controlled via the ANGLEUNIT keyword.

ANGLETERM [NONE/ONLY] This keyword controls use of the bond angle bending potential
energy term. In the absence of a modifying option, this keyword turns on use of the potential. The
NONE option turns off use of this potential energy term. The ONLY option turns off all potential
energy terms except for this one.

ANGLEUNIT [real] Sets the scale factor needed to convert the energy value computed by the bond
angle bending potential into units of kcal/mole. The correct value is force field dependent and
typically provided in the header of the master force field parameter file. The default value of
(r/180)2 = 0.0003046 is used, if the ANGLEUNIT keyword is not given in the force field parameter
file or the keyfile.

ANGMAX [real] Set the maximum permissible angle between the current optimization search
direction and the negative of the gradient direction. If this maximum angle value is exceeded, the
optimization routine will note an error condition and may restart from the steepest descent
direction. The default value in the absence of the ANGMAX keyword is usually 88 degrees for
conjugate gradient methods and 180 degrees (i.e., disabled) for variable metric optimizations.

ANISO-PRESSURE This keyword invokes use of full anisotropic pressure during dynamics
simulations. When using this option, the three axis lengths and axis angles vary separately in

35 TINKER User's Guide 35

response to the pressure tensor. The default, in the absence of the keyword, is isotropic pressure
based on the average of the diagonal of the pressure tensor.

ARCHIVE This keyword causes TINKER molecular dynamics-based programs to write trajectories
directly to a single plain-text archive file with the .arc format. If an archive file already exists at the
start of the calculation, then the newly generated trajectory is appended to the end of the existing file.
The default in the absence of this keyword is to write the trajectory snapshots to consecutively
numbered cycle files.

ATOM [2 integers, name, quoted string, integer, real & integer] This keyword provides the
values needed to define a single force field atom type.

B-AXIS [real] Sets the value of the b-axis length for a crystal unit cell, or, equivalently, the Y-axis
length for a periodic box. The length value in Angstroms is listed after the keyword. If the keyword is
absent, the b-axis length is set equal to the a-axis length.

B-EXPTERM [real] Sets the value of the "B" exponential factor in the Buckingham van der Waals
function, i.e, the value of B in the formula E 4, = € { A exp[-B(R,/R]] - C (RO/R)6 }

BAROSTAT [BERENDSEN] This keyword selects a barostat algorithm for use during molecular
dynamics. At present only one modifier is available, a Berendsen bath coupling method. The default
in the absence of the BAROSTAT keyword is to use the BERENDSEN algorithm.

BASIN [2 reals] Presence of this keyword turns on a “basin" restraint potential function that
serves to drive the system toward a compact structure. The actual function is a Gaussian of the form
Epasin = Z A exp[-B R2], summed over all pairs of atoms where R is the distance between atoms. The A

and B values are the depth and width parameters given as modifiers to the BASIN keyword. This
potential is currently used to control the degree of expansion during potential energy smooth
procedures through the use of shallow, broad basins.

BETA [real] Sets the value of the 3 angle of a crystal unit cell, i.e., the angle between the a-axis and
c-axis of a unit cell, or, equivalently, the angle between the X-axis and Z-axis of a periodic box. The
default value in the absence of the BETA keyword is to set the angle equal to the o angle as given by
the keyword ALPHA.

BIOTYPE [integer, name, quoted string & integer] This keyword provides the values to define
the correspondence between a single biopolymer atom type and its force field atom type.

BOND [2 integers & 2 reals] This keyword provides the values for a single bond stretching
parameter. The integer modifiers give the atom class numbers for the two kinds of atoms involved in
the bond which is to be defined. The real number modifiers give the force constant value for the bond
and the ideal bond length in ». The default units for the force constant are kcal/mole/~2, but this can
be controlled via the BONDUNIT keyword.

BOND-CUBIC [real] Sets the value of the cubic term in the Taylor series expansion form of the
bond stretching potential energy. The real number modifier gives the value of the coefficient as a
multiple of the quadratic coefficient. This term multiplied by the bond stretching energy unit
conversion factor, the force constant, and the cube of the deviation of the bond length from its ideal
value gives the cubic contribution to the bond stretching energy. The default value in the absence of
the BOND-CUBIC keyword is zero; ie., the cubic bond stretching term is omitted.

36 TINKER User's Guide 36

BOND-QUARTIC [real] Sets the value of the quartic term in the Taylor series expansion form of
the bond stretching potential energy. The real number modifier gives the value of the coefficient as a
multiple of the quadratic coefficient. This term multiplied by the bond stretching energy unit
conversion factor, the force constant, and the forth power of the deviation of the bond length from its
ideal value gives the quartic contribution to the bond stretching energy. The default value in the
absence of the BOND-QUARTIC keyword is zero; i.e., the quartic bond stretching term is omitted.

BOND3 [2 integers & 2 reals] This keyword provides the values for a single bond stretching
parameter specific to atoms in 3-membered rings. The integer modifiers give the atom class numbers
for the two kinds of atoms involved in the bond which is to be defined. The real number modifiers
give the force constant value for the bond and the ideal bond length in =. The default units for the
force constant are kcal/mole/~2, but this can be controlled via the BONDUNIT keyword. If any
BOND3 keywords are present, either in the master force field parameter file or the keyfile, then
TINKER requires that special BOND3 parameters be given for all bonds in 3-membered rings. In the
absence of any BOND3 keywords, standard BOND parameters will be used for bonds in 3-membered
rings.

BOND4 [2 integers & 2 reals] This keyword provides the values for a single bond stretching
parameter specific to atoms in 4-membered rings. The integer modifiers give the atom class numbers
for the two kinds of atoms involved in the bond which is to be defined. The real number modifiers
give the force constant value for the bond and the ideal bond length in =. The default units for the
force constant are kcal/mole/~2, but this can be controlled via the BONDUNIT keyword. If any
BOND4 keywords are present, either in the master force field parameter file or the keyfile, then
TINKER requires that special BOND4 parameters be given for all bonds in 4-membered rings. In the
absence of any BOND4 keywords, standard BOND parameters will be used for bonds in 4-membered
rings

BONDS5 [2 integers & 2 reals] This keyword provides the values for a single bond stretching
parameter specific to atoms in 5-membered rings. The integer modifiers give the atom class numbers
for the two kinds of atoms involved in the bond which is to be defined. The real number modifiers
give the force constant value for the bond and the ideal bond length in =. The default units for the
force constant are kcal/mole/~2, but this can be controlled via the BONDUNIT keyword. If any
BONDS5 keywords are present, either in the master force field parameter file or the keyfile, then
TINKER requires that special BOND5 parameters be given for all bonds in 5-membered rings. In the
absence of any BOND5 keywords, standard BOND parameters will be used for bonds in 5-membered
rings

BONDTERM [NONE/ONLY] This keyword controls use of the bond stretching potential energy
term. In the absence of a modifying option, this keyword turns on use of the potential. The NONE
option turns off use of this potential energy term. The ONLY option turns off all potential energy
terms except for this one.

BONDTYPE [TAYLOR/MORSE/GAUSSIAN] Chooses the functional form of the bond stretching
potential. The TAYLOR option selects a Taylor series expansion containing terms from harmonic
through quartic. The MORSE option selects a Morse potential fit to the ideal bond length and
stretching force constant parameter values. The GAUSSIAN option uses an inverted Gaussian with
amplitude equal to the Morse bond dissociation energy and width set to reproduce the vibrational
frequency of a harmonic potential. The default is to use the TAYLOR potential.

BONDUNIT [real] Sets the scale factor needed to convert the energy value computed by the bond
stretching potential into units of kcal/mole. The correct value is force field dependent and typically

37 TINKER User's Guide 37

provided in the header of the master force field parameter file. The default value of 1.0 is used, if the
BONDUNIT keyword is not given in the force field parameter file or the keyfile.

C-AXIS [real] Sets the value of the C-axis length for a crystal unit cell, or, equivalently, the Z-axis
length for a periodic box. The length value in Angstroms is listed after the keyword. If the keyword is
absent, the C-axis length is set equal to the A-axis length.

C-EXPTERM [real] Sets the value of the “C" dispersion multiplier in the Buckingham van der
Waals function, i.e, the value of C in the formula E 4, = € { Aexp[-B(R,/R)] - C(R,/ R)®}.

CAPPA [real] This keyword is used to set the normal termination criterion for the line search
phase of TINKER optimization routines. The line search exits successfully if the ratio of the current
gradient projection on the line to the projection at the start of the line search falls below the value of
CAPPA. A default value of 0.1 is used in the absence of the CAPPA keyword.

CHARGE [1 integer & 1 real] This keyword provides a value for a single atomic partial charge
electrostatic parameter. The integer modifier, if positive, gives the atom type number for which the
charge parameter is to be defined. Note that charge parameters are given for atom types, not atom
classes. If the integer modifier is negative, then the parameter value to follow applies only to the
individual atom whose atom number is the negative of the modifier. The real number modifier gives
the values of the atomic partial charge in electrons.

CHARGETERM [NONE/ONLY] This keyword controls use of the charge-charge potential energy
term between pairs of atomic partial charges. In the absence of a modifying option, this keyword
turns on use of the potential. The NONE option turns off use of this potential energy term. The ONLY
option turns off all potential energy terms except for this one.

CHG-12-SCALE [real] This keyword provides a multiplicative scale factor that is applied to charge-
charge electrostatic interactions between 1-2 connected atoms, i.e.,, atoms that are directly bonded.
The default value of 0.0 is used, if the CHG-12-SCALE keyword is not given in either the parameter
file or the keyfile.

CHG-13-SCALE [real] This keyword provides a multiplicative scale factor that is applied to charge-
charge electrostatic interactions between 1-3 connected atoms, i.e., atoms separated by two covalent
bonds. The default value of 0.0 is used, if the CHG-13-SCALE keyword is not given in either the
parameter file or the keyfile.

CHG-14-SCALE [real] This keyword provides a multiplicative scale factor that is applied to charge-
charge electrostatic interactions between 1-4 connected atoms, ie., atoms separated by three
covalent bonds. The default value of 1.0 is used, if the CHG-14-SCALE keyword is not given in either
the parameter file or the keyfile.

CHG-15-SCALE [real] This keyword provides a multiplicative scale factor that is applied to charge-
charge electrostatic interactions between 1-5 connected atoms, i.e., atoms separated by four covalent
bonds. The default value of 1.0 is used, if the CHG-15-SCALE keyword is not given in either the
parameter file or the keyfile.

CHG-CUTOFF [real] Sets the cutoff distance value in Angstroms for charge-charge electrostatic
potential energy interactions. The energy for any pair of sites beyond the cutoff distance will be set to
zero. Other keywords can be used to select a smoothing scheme near the cutoff distance. The default

38 TINKER User's Guide 38

cutoff distance in the absence of the CHG-CUTOFF keyword is infinite for nonperiodic systems and
9.0 for periodic systems.

CHG-TAPER [real] This keyword allows modification of the cutoff window for charge-charge
electrostatic potential energy interactions. It is similar in form and action to the TAPER keyword,
except that its value applies only to the charge-charge potential. The default value in the absence of
the CHG-TAPER keyword is to begin the cutoff window at 0.65 of the corresponding cutoff distance.

CHGDPLTERM [NONE/ONLY] This keyword controls use of the charge-dipole potential energy
term between atomic partial charges and bond dipoles. In the absence of a modifying option, this
keyword turns on use of the potential. The NONE option turns off use of this potential energy term.
The ONLY option turns off all potential energy terms except for this one.

COLLISION [real] Sets the value of the random collision frequency used in the Andersen stochastic
collision dynamics thermostat. The supplied value has units of fs1 atom™! and is multiplied internal
to TINKER by the time step in fs and N"2/3 where N is the number of atoms. The default value used in
the absence of the COLLISION keyword is 0.1 which is appropriate for many systems but may need
adjustment to achieve adequate temperature control without perturbing the dynamics.

COMPRESS [real] Sets the value of the bulk solvent isothermal compressibility in Atm™! for use
during pressure computation and scaling in molecular dynamics computations. The default value
used in the absence of the COMPRESS keyword is 0.000046, appropriate for water. This parameter
serves as a scale factor for the Groningen-style pressure bath coupling time, and its exact value
should not be of critical importance.

CUTOFF [real] Sets the cutoff distance value for all nonbonded potential energy interactions. The
energy for any of the nonbonded potentials of a pair of sites beyond the cutoff distance will be set to
zero. Other keywords can be used to select a smoothing scheme near the cutoff distance, or to apply
different cutoff distances to various nonbonded energy terms.

DEBUG Turns on printing of detailed information and intermediate values throughout the progress
of a TINKER computation; not recommended for use with large structures or full potential energy
functions since a summary of every individual interaction will usually be output.

DEFORM [real] Sets the amount of diffusion equation-style smoothing that will be applied to the
potential energy surface when using the SMOOTH force field. The real number option is equivalent to
the “time" value in the original Piela, et al. formalism; the larger the value, the greater the smoothing,
The default value is zero, meaning that no smoothing will be applied.

DEGREES-FREEDOM [integer] This keyword allows manual setting of the number of degrees of
freedom during a dynamics calculation. The integer modifier is used by thermostating methods and
in other places as the number of degrees of freedom, overriding the value determined by the TINKER
code at dynamics startup. In the absence of the keyword, the programs will automatically compute
the correct value based on the number of atoms active during dynamics, bond or other constrains,
and use of periodic boundary conditions.

DELTA-HALGREN [real] Sets the value of the & parameter in Halgren's buffered 14-7 vdw
potential energy functional form. In the absence of the DELTA-HALGREN keyword, a default value of
0.07 is used.

39 TINKER User's Guide 39

DIELECTRIC [real] Sets the value of the bulk dielectric constant used to damp all electrostatic
interaction energies for any of the TINKER electrostatic potential functions. The default value is force
field dependent, but is usually equal to 1.0 (for Allinger's MM force fields the default is 1.5).

DIFFUSE-CHARGE [real] This keyword is used during potential function smoothing procedures to
specify the effective diffusion coefficient to be applied to the smoothed form of the Coulomb's Law
charge-charge potential function. In the absence of the DIFFUSE-CHARGE keyword, a default value of
3.5is used.

DIFFUSE-TORSION [real] This keyword is used during potential function smoothing procedures
to specify the effective diffusion coefficient to be applied to the smoothed form of the torsion angle
potential function. In the absence of the DIFFUSE-TORSION keyword, a default value of 0.0225 is
used.

DIFFUSE-VDW [real] This keyword is used during potential function smoothing procedures to
specify the effective diffusion coefficient to be applied to the smoothed Gaussian approximation to
the Lennard-Jones van der Waals potential function. In the absence of the DIFFUSE-VDW keyword, a
default value of 1.0 is used.

DIGITS [integer] This keyword controls the number of digits of precision output by TINKER in
reporting potential energies and atomic coordinates. The allowed values for the integer modifier are
4, 6 and 8. Input values less than 4 will be set to 4, and those greater than 8 will be set to 8. Final
energy values reported by most TINKER programs will contain the specified number of digits to the
right of the decimal point. The number of decimal places to be output for atomic coordinates is
generally two larger than the value of DIGITS. In the absence of the DIGITS keyword a default value of
4 is used, and energies will be reported to 4 decimal places with coordinates to 6 decimal places.

DIPOLE [2 integers & 2 reals] This keyword provides the values for a single bond dipole
electrostatic parameter. The integer modifiers give the atom type numbers for the two kinds of atoms
involved in the bond dipole which is to be defined. The real number modifiers give the value of the
bond dipole in Debyes and the position of the dipole site along the bond. If the bond dipole value is
positive, then the first of the two atom types is the positive end of the dipole. For a negative bond
dipole value, the first atom type listed is negative. The position along the bond is an optional modifier
that gives the postion of the dipole site as a fraction between the first atom type (position=0) and the
second atom type (position=1). The default for the dipole position in the absence of a specified value
is 0.5, placing the dipole at the midpoint of the bond.

DIPOLE3 [2 integers & 2 reals] This keyword provides the values for a single bond dipole
electrostatic parameter specific to atoms in 3-membered rings. The integer modifiers give the atom
type numbers for the two kinds of atoms involved in the bond dipole which is to be defined. The real
number modifiers give the value of the bond dipole in Debyes and the position of the dipole site along
the bond. The default for the dipole position in the absence of a specified value is 0.5, placing the
dipole at the midpoint of the bond. If any DIPOLE3 keywords are present, either in the master force
field parameter file or the keyfile, then TINKER requires that special DIPOLE3 parameters be given
for all bond dipoles in 3-membered rings. In the absence of any DIPOLE3 keywords, standard DIPOLE
parameters will be used for bonds in 3-membered rings.

DIPOLE4 [2 integers & 2 reals] This keyword provides the values for a single bond dipole
electrostatic parameter specific to atoms in 4-membered rings. The integer modifiers give the atom
type numbers for the two kinds of atoms involved in the bond dipole which is to be defined. The real
number modifiers give the value of the bond dipole in Debyes and the position of the dipole site along
the bond. The default for the dipole position in the absence of a specified value is 0.5, placing the

40 TINKER User's Guide 40

dipole at the midpoint of the bond. If any DIPOLE4 keywords are present, either in the master force
field parameter file or the keyfile, then TINKER requires that special DIPOLE4 parameters be given
for all bond dipoles in 4-membered rings. In the absence of any DIPOLE4 keywords, standard DIPOLE
parameters will be used for bonds in 4-membered rings.

DIPOLES [2 integers & 2 reals] This keyword provides the values for a single bond dipole
electrostatic parameter specific to atoms in 5-membered rings. The integer modifiers give the atom
type numbers for the two kinds of atoms involved in the bond dipole which is to be defined. The real
number modifiers give the value of the bond dipole in Debyes and the position of the dipole site along
the bond. The default for the dipole position in the absence of a specified value is 0.5, placing the
dipole at the midpoint of the bond. If any DIPOLES keywords are present, either in the master force
field parameter file or the keyfile, then TINKER requires that special DIPOLE5 parameters be given
for all bond dipoles in 5-membered rings. In the absence of any DIPOLE5 keywords, standard DIPOLE
parameters will be used for bonds in 5-membered rings.

DIPOLETERM [NONE/ONLY] This keyword controls use of the dipole-dipole potential energy
term between pairs of bond dipoles. In the absence of a modifying option, this keyword turns on use
of the potential. The NONE option turns off use of this potential energy term. The ONLY option turns
off all potential energy terms except for this one.

DIRECT-11-SCALE [real] This keyword provides a multiplicative scale factor that is applied to the
permanent (direct) field due to atoms within a polarization group during an induced dipole
calculation, ie, atoms that are in the same polarization group as the atom being polarized. The
default value of 0.0 is used, if the DIRECT-11-SCALE keyword is not given in either the parameter file
or the keyfile.

DIRECT-12-SCALE [real] This keyword provides a multiplicative scale factor that is applied to the
permanent (direct) field due to atoms in 1-2 polarization groups during an induced dipole
calculation, ie., atoms that are in polarization groups directly connected to the group containing the
atom being polarized. The default value of 0.0 is used, if the DIRECT-12-SCALE keyword is not given
in either the parameter file or the keyfile.

DIRECT-13-SCALE [real] This keyword provides a multiplicative scale factor that is applied to the
permanent (direct) field due to atoms in 1-3 polarization groups during an induced dipole
calculation, ie, atoms that are in polarization groups separated by one group from the group
containing the atom being polarized. The default value of 0.0 is used, if the DIRECT-13-SCALE
keyword is not given in either the parameter file or the keyfile.

DIRECT-14-SCALE [real] This keyword provides a multiplicative scale factor that is applied to the
permanent (direct) field due to atoms in 1-4 polarization groups during an induced dipole
calculation, ie., atoms that are in polarization groups separated by two groups from the group
containing the atom being polarized. The default value of 1.0 is used, if the DIRECT-14-SCALE
keyword is not given in either the parameter file or the keyfile.

DIVERGE [real] This keyword is used by the SADDLE program to set the maximum allowed value
of the ratio of the gradient length along the path to the total gradient norm at the end of a cycle of
minimization perpendicular to the path. If the value provided by the DIVERGE keyword is exceeded,
then another cycle of maximization along the path is required. A default value of 0.005 is used in the
absence of the DIVERGE keyword.

DPL-CUTOFF [real] Sets the cutoff distance value in Angstroms for bond dipole-bond dipole
electrostatic potential energy interactions. The energy for any pair of bond dipole sites beyond the

41 TINKER User's Guide 41

cutoff distance will be set to zero. Other keywords can be used to select a smoothing scheme near the
cutoff distance. The default cutoff distance in the absence of the DPL-CUTOFF keyword is essentially
infinite for nonperiodic systems and 10.0 for periodic systems.

DPL-TAPER [real] This keyword allows modification of the cutoff windows for bond dipole-bond
dipole electrostatic potential energy interactions. It is similar in form and action to the TAPER
keyword, except that its value applies only to the vdw potential. The default value in the absence of
the DPL-TAPER keyword is to begin the cutoff window at 0.75 of the dipole cutoff distance.

ECHO [text string] The presence of this keyword causes whatever text follows it on the line to be
copied directly to the output file. This keyword is also active in parameter files. It has no default
value; if no text follows the ECHO keyword, a blank line is placed in the output file.

ELECTNEG [3 integers & 1 real] This keyword provides the values for a single electronegativity
bond length correction parameter. The first two integer modifiers give the atom class numbers of the
atoms involved in the bond to be corrected. The third integer modifier is the atom class of an
electronegative atom. In the case of a primary correction, an atom of this third class must be directly
bonded to an atom of the second atom class. For a secondary correction, the third class is one atom
removed from an atom of the second class. The real number modifier is the value in = by which the
original ideal bond length is to be corrected.

ENFORCE-CHIRALITY This keyword causes the chirality found at chiral tetravalent centers in the
input structure to be maintained during TINKER calculations. The test for chirality is not exhaustive;
two identical monovalent atoms connected to a center cause it to be marked as non-chiral, but large
equivalent substituents are not detected. Trivalent “chiral" centers, for example the alpha carbon in
united-atom protein structures, are not enforced as chiral.

EPSILONRULE [GEOMETRIC/ARITHMETIC/HARMONIC/HHG] This keyword selects the
combining rule used to derive the ¢ value for van der Waals interactions. The default in the absence
of the EPSILONRULE keyword is to use the GEOMETRIC mean of the individual € values of the two
atoms involved in the van der Waals interaction.

EWALD This keyword turns on the use of Ewald summation during computation of electrostatic
interactions in periodic systems. In the current version of TINKER, regular Ewald is used for
polarizable atomic multipoles, and smooth particle mesh Ewald (PME) is used for charge-charge
interactions. Ewald summation is not available for interactions involving bond-centered dipoles. By
default, in the absence of the EWALD keyword, distance-based cutoffs are used for electrostatic
interactions.

EWALD-ALPHA [real] Sets the value of the Ewald coefficient which controls the width of the
Gaussian screening charges during particle mesh Ewald summation. In the absence of the EWALD-
ALPHA keyword, a value is chosen which causes interactions outside the real-space cutoff to be
below a fixed tolerance. For most standard applications of Ewald summation, the program default
should be used.

EWALD-BOUNDARY This keyword invokes the use of insulating (ie, vacuum) boundary conditions
during Ewald summation, corresponding to the media surrounding the system having a dielectric
value of 1. The default in the absence of the EWALD-BOUNDARY keyword is to use conducting (ie,
tinfoil) boundary conditions where the surrounding media is assumed to have an infinite dielectric
value.

42 TINKER User's Guide 42

EWALD-CUTOFF [real] Sets the value in Angstroms of the real-space distance cutoff for use during
Ewald summation. By default, in the absence of the EWALD-CUTOFF keyword, a value of 9.0 is used.

EXIT-PAUSE This keyword causes TINKER programs to pause and wait for a carriage return at the
end of executation prior to returning control to the operating system. This is useful to keep the
execution window open following termination on machines running Microsoft Windows or Apple
MacOS. The default in the absence of the EXIT-PAUSE keyword, is to return control to the operating
system immediately at program termination.

EXTRATERM [NONE/ONLY] This keyword controls use of the user defined extra potential energy
term. In the absence of a modifying option, this keyword turns on use of the potential. The NONE
option turns off use of this potential energy term. The ONLY option turns off all potential energy
terms except for this one.

FCTMIN [real] This keyword sets a convergence criterion for successful completion of a TINKER
optimization. If the value of the optimization objective function, typically the potential energy, falls
below the value set by FCTMIN, then the optimization is deemed to have converged. The default
value in the absence of the FCTMIN keyword is -1000000, effectively removing this criterion as a
possible agent for termination.

FORCEFIELD [name] This keyword provides a name for the force field to be used in the current
calculation. Its value is usually set in the master force field parameter file for the calculation (see the
PARAMETERS keyword) instead of in the keyfile.

FRICTION [real] Sets the value of the frictional coefficient in ps-! for use with stochastic dynamics.
The default value used in the absence of the FRICTION keyword is 91.0, which is generally
appropriate for water.

FRICTION-SCALING This keyword turns on the use of atomic surface area-based scaling of the
frictional coefficient during stochastic dynamics. When in use, the coefficient for each atom is
multiplied by that atom's fraction of exposed surface area. The default in the absence of the keyword
is to omit the scaling and use the full coefficient value for each atom.

GAMMA [real] Sets the value of the y angle of a crystal unit cell, i.e, the angle between the a-axis
and b-axis of a unit cell, or, equivalently, the angle between the X-axis and Y-axis of a periodic box.
The default value in the absence of the GAMMA keyword is to set the y angle equal to the a angle as
given by the keyword ALPHA.

GAMMA-HALGREN [real] Sets the value of the y parameter in Halgren's buffered 14-7 vdw
potential energy functional form. In the absence of the DELTA-HALGREN keyword, a default value of
0.12 is used.

GAMMAMIN [real] Sets the convergence target value for y during searches for maxima along the
quadratic synchronous transit used by the SADDLE program. The value of y is the square of the ratio
of the gradient projection along the path to the total gradient. A default value of 0.00001 is used in
the absence of the GAMMAMIN keyword.

GAUSSTYPE [L]-2/LJ-4/MM2-2/MM3-2/IN-PLACE] This keyword specifies the underlying vdw
form that a Gaussian vdw approximation will attempt to fit.number of terms to be used in a Gaussian
approximation of the Lennard-Jones van der Waals potential. The text modifier gives the name of the
functional form to be used. Thus LJ-2 as a modifier will result in a 2-Gaussian fit to a Lennard-Jones

43 TINKER User's Guide 43

vdw potential. The GAUSSTYPE keyword only takes effect when VDWTYPE is set to GAUSSIAN. This
keyword has no default value.

GROUP [integer, integer list] This keyword defines an atom group as a substructure within the
full input molecular structure. The value of the first integer is the group number which must be in the
range from 1 to the maximum number of allowed groups. The remaining intergers give the atom or
atoms contained in this group as one or more atom numbers or ranges. Multiple keyword lines can
be used to specify additional atoms in the same group. Note that an atom can only be in one group,
the last group to which it is assigned is the one used.

GROUP-INTER This keyword assigns a value of 1.0 to all inter-group interactions and a value of 0.0
to all intra-group interactions. For example, combination with the GROUP-MOLECULE keyword
provides for rigid-body calculations.

GROUP-INTRA This keyword assigns a value of 1.0 to all intra-group interactions and a value of
0.0 to all inter-group interactions.

GROUP-MOLECULE This keyword sets each individual molecule in the system to be a separate
atom group, but does not assign weights to group-group interactions.

GROUP-SELECT [2 integers, real] This keyword gives the weight in the final potential energy of a
specified set of intra- or intergroup interactions. The integer modifiers give the group numbers of the
groups involved. If the two numbers are the same, then an intragroup set of interactions is specified.
The real modifier gives the weight by which all energetic interactions in this set will be multiplied
before incorporation into the final potential energy. If omitted as a keyword modifier, the weight will
be set to 1.0 by default. If any SELECT-GROUP keywords are present, then any set of interactions not
specified in a SELECT-GROUP keyword is given a zero weight. The default when no SELECT-GROUP
keywords are specified is to use all intergroup interactions with a weight of 1.0 and to set all
intragroup interactions to zero.

HBOND [2 integers & 2 reals] This keyword provides the values for the MM3-style directional
hydrogen bonding parameters for a single pair of atoms. The integer modifiers give the pair of atom
class numbers for which hydrogen bonding parameters are to be defined. The two real number
modifiers give the values of the minimum energy contact distance in = and the well depth at the
minimum distance in kcal/mole.

HESS-CUTOFF [real] This keyword defines a lower limit for significant Hessian matrix elements.
During computation of the Hessian matrix of partial second derivatives, any matrix elements with
absolute value below HESS-CUTOFF will be set to zero and omitted from the sparse matrix Hessian
storage scheme used by TINKER. For most calculations, the default in the absence of this keyword is
zero, i.e., all elements will be stored. For most Truncated Newton optimizations the Hessian cutoff
will be chosen dynamically by the optimizer.

HGUESS [real] Sets an initial guess for the average value of the diagonal elements of the scaled
inverse Hessian matrix used by the optimally conditioned variable metric optimization routine. A
default value of 0.4 is used in the absence of the HGUESS keyword.

IMPROPER [4 integers & 2 reals] This keyword provides the values for a single CHARMM-style
improper dihedral angle parameter.

44 TINKER User's Guide 44

IMPROPTERM [NONE/ONLY] This keyword controls use of the CHARMM-style improper dihedral
angle potential energy term. In the absence of a modifying option, this keyword turns on use of the
potential. The NONE option turns off use of this potential energy term. The ONLY option turns off all
potential energy terms except for this one.

IMPROPUNIT [real] Sets the scale factor needed to convert the energy value computed by the
CHARMM-style improper dihedral angle potential into units of kcal/mole. The correct value is force
field dependent and typically provided in the header of the master force field parameter file. The
default value of 1.0 is used, if the IMPROPUNIT keyword is not given in the force field parameter file
or the keyfile.

IMPTORS [4 integers & up to 3 real/real/integer triples] This keyword provides the values for
a single AMBER-style improper torsional angle parameter. The first four integer modifiers give the
atom class numbers for the atoms involved in the improper torsional angle to be defined. By
convention, the third atom class of the four is the trigonal atom on which the improper torsion is
centered. The torsional angle computed is literally that defined by the four atom classes in the order
specified by the keyword. Each of the remaining triples of real/real/integer modifiers give the half-
amplitude, phase offset in degrees and periodicity of a particular improper torsional term,
respectively. Periodicities through 3-fold are allowed for improper torsional parameters.

IMPTORSTERM [NONE/ONLY] This keyword controls use of the AMBER-style improper torsional
angle potential energy term. In the absence of a modifying option, this keyword turns on use of the
potential. The NONE option turns off use of this potential energy term. The ONLY option turns off all
potential energy terms except for this one.

IMPTORSUNIT [real] Sets the scale factor needed to convert the energy value computed by the
AMBER-style improper torsional angle potential into units of kcal/mole. The correct value is force
field dependent and typically provided in the header of the master force field parameter file. The
default value of 1.0 is used, if the IMPTORSUNIT keyword is not given in the force field parameter file
or the keyfile.

INACTIVE [integer list] Sets the list of inactive atoms during a TINKER computation. Individual
potential energy terms are not computed when all atoms involved in the term are inactive. For
Cartesian space calculations, inactive atoms are not allowed to move. For torsional space
calculations, rotations are not allowed when there are inactive atoms on both sides of the rotated
bond. Multiple INACTIVE lines can be present in the keyfile, and on each line the keyword can be
followed by one or more atom numbers or ranges. If any INACTIVE keys are found, all atoms are set
to active except those listed on the INACTIVE lines. The ACTIVE keyword overrides all INACTIVE
keywords found in the keyfile.

INTEGRATE [VERLET /BEEMAN /STOCHASTIC/RIGIDBODY] Chooses the integration method for
propagation of dynamics trajectories. The keyword is followed on the same line by the name of the
option. Standard Newtonian MD can be run using either VERLET for the Velocity Verlet method, or
BEEMAN for the velocity form of Bernie Brook's “"Better Beeman" method. A Velocity Verlet-based
stochastic dynamics trajectory is selected by the STOCHASTIC modifier. A rigid-body dynamics
method is selected by the RIGIDBODY modifier. The default integration scheme is MD using the
BEEMAN method.

INTMAX [integer] Sets the maximum number of interpolation cycles that will be allowed during
the line search phase of an optimization. All gradient-based TINKER optimization routines use a
common line search routine involving quadratic extrapolation and cubic interpolation. If the value of
INTMAX is reached, an error status is set for the line search and the search is repeated with a much

45 TINKER User's Guide 45

smaller initial step size. The default value in the absence of this keyword is optimization routine
dependent, but is usually in the range 5 to 10.

LAMBDA [real] This keyword sets the value of the A path parameter for free energy perturbation
calculations. The real number modifier specifies the position along the mutation path and must be a
number in the range from 0 (initial state) to 1 (final state). The actual atoms involved in the mutation
are given separately in individual MUTATE keyword lines.

LBFGS-VECTORS [integer] Sets the number of correction vectors used by the limited-memory L-
BFGS optimization routine. The current maximum allowable value, and the default in the absence of
the LBFGS-VECTORS keyword is 15.

LIGHTS This keyword turns on Method of Lights neighbor generation for the partial charge
electrostatics and any of the van der Waals potentials. This method will yield identical energetic
results to the standard double loop method. Method of Lights will be faster when the volume of a
sphere with radius equal to the nonbond cutoff distance is significantly less than half the volume of
the total system (ie., the full molecular system, the crystal unit cell or the periodic box). It requires
less storage than pairwise neighbor lists.

LIST-BUFFER [real] Sets the size of the neighbor list buffer in Angstroms. This value is added to
the actual cutoff distance to determine which pairs will be kept on the neighbor list. The same buffer
value is used for all neighbor lists. The default value in the absence of 2.0 is used in the absence of the
LIST-BUFFER keyword.

MAXITER [integer] Sets the maximum number of minimization iterations that will be allowed for
any TINKER program that uses any of the nonlinear optimization routines. The default value in the
absence of this keyword is program dependent, but is always set to a very large number.

METAL This keyword provides the values for a single transition metal ligand field parameter. Note
this keyword is present in the code, but not active in the current version of TINKER.

METALTERM [NONE/ONLY] This keyword controls use of the transition metal ligand field
potential energy term. In the absence of a modifying option, this keyword turns on use of the
potential. The NONE option turns off use of this potential energy term. The ONLY option turns off all
potential energy terms except for this one.

MM2-STRBND This keyword switches the behavior of the stretch-bend potential function to match
the formulation used by the MM2 force field. In MM2, stretching of bonds to attached hydrogen
atoms is not including in computing the stretch-bend cross term energy. The default behavior in the
absence of this keyword is to include stretching of attached hydrogen atoms as in the MM3 force
field.

MPOLE-12-SCALE [real] This keyword provides a multiplicative scale factor that is applied to
permanent atomic multipole electrostatic interactions between 1-2 connected atoms, i.e., atoms that
are directly bonded. The default value of 0.0 is used, if the MPOLE-12-SCALE keyword is not given in
either the parameter file or the keyfile.

MPOLE-13-SCALE [real] This keyword provides a multiplicative scale factor that is applied to
permanent atomic multipole electrostatic interactions between 1-3 connected atoms, i.e., atoms
separated by two covalent bonds. The default value of 0.0 is used, if the MPOLE-13-SCALE keyword is
not given in either the parameter file or the keyfile.

46 TINKER User's Guide 46

MPOLE-14-SCALE [real] This keyword provides a multiplicative scale factor that is applied to
permanent atomic multipole electrostatic interactions between 1-4 connected atoms, i.e., atoms
separated by three covalent bonds. The default value of 1.0 is used, if the MPOLE-14-SCALE keyword
is not given in either the parameter file or the keyfile.

MPOLE-15-SCALE [real] This keyword provides a multiplicative scale factor that is applied to
permanent atomic multipole electrostatic interactions between 1-5 connected atoms, i.e., atoms
separated by four covalent bonds. The default value of 1.0 is used, if the MPOLE-15-SCALE keyword
is not given in either the parameter file or the keyfile.

MPOLE-CUTOFF [real] Sets the cutoff distance value in Angstroms for atomic multipole potential
energy interactions. The energy for any pair of sites beyond the cutoff distance will be set to zero.
Other keywords can be used to select a smoothing scheme near the cutoff distance. The default cutoff
distance in the absence of the MPOLE-CUTOFF keyword is infinite for nonperiodic systems and 9.0
for periodic systems.

MPOLE-TAPER [real] This keyword allows modification of the cutoff window for atomic multipole
potential energy interactions. It is similar in form and action to the TAPER keyword, except that its
value applies only to the atomic multipole potential. The default value in the absence of the MPOLE-
TAPER keyword is to begin the cutoff window at 0.65 of the corresponding cutoff distance.

MPOLETERM [NONE/ONLY] This keyword controls use of the atomic multipole electrostatics
potential energy term. In the absence of a modifying option, this keyword turns on use of the
potential. The NONE option turns off use of this potential energy term. The ONLY option turns off all
potential energy terms except for this one.

MULTIPOLE [5 lines with: 3 or 4 integers & 1 real; 3 reals; 1 real; 2 reals; 3 reals] This
keyword provides the values for a set of atomic multipole parameters at a single site. A complete
keyword entry consists of three consequtive lines, the first line containing the MULTIPOLE keyword
and the two following lines. The first line contains three integers which define the atom type on
which the multipoles are centered, and the Z-axis and X-axis defining atom types for this center. The
optional fourth integer contains the Y-axis defining atom type, and is only required for locally chiral
multipole sites. The real number on the first line gives the monopole (atomic charge) in electrons.
The second line contains three real numbers which give the X-, Y- and Z-components of the atomic
dipole in electron-%. The final three lines, consisting of one, two and three real numbers give the
upper triangle of the traceless atomic quadrupole tensor in electron-~2,

MUTATE [3 integers] This keyword is used to specify atoms to be mutated during free energy
perturbation calculations. The first integer modifier gives the atom number of an atom in the current
system. The final two modifier values give the atom types corresponding the the A=0 and A=1 states
of the specified atom.

MUTUAL-11-SCALE [real] This keyword provides a multiplicative scale factor that is applied to
the induced (mutual) field due to atoms within a polarization group during an induced dipole
calculation, ie, atoms that are in the same polarization group as the atom being polarized. The
default value of 1.0 is used, if the MUTUAL-11-SCALE keyword is not given in either the parameter
file or the keyfile.

MUTUAL-12-SCALE [real] This keyword provides a multiplicative scale factor that is applied to
the induced (mutual) field due to atoms in 1-2 polarization groups during an induced dipole

47 TINKER User's Guide 47

calculation, ie., atoms that are in polarization groups directly connected to the group containing the
atom being polarized. The default value of 1.0 is used, if the MUTUAL-12-SCALE keyword is not given
in either the parameter file or the keyfile.

MUTUAL-13-SCALE [real] This keyword provides a multiplicative scale factor that is applied to
the induced (mutual) field due to atoms in 1-3 polarization groups during an induced dipole
calculation, ie, atoms that are in polarization groups separated by one group from the group
containing the atom being polarized. The default value of 1.0 is used, if the MUTUAL-13-SCALE
keyword is not given in either the parameter file or the keyfile.

MUTUAL-14-SCALE [real] This keyword provides a multiplicative scale factor that is applied to
the induced (mutual) field due to atoms in 1-4 polarization groups during an induced dipole
calculation, ie., atoms that are in polarization groups separated by two groups from the group
containing the atom being polarized. The default value of 1.0 is used, if the MUTUAL-14-SCALE
keyword is not given in either the parameter file or the keyfile.

NEIGHBOR-GROUPS This keyword causes the attached atom to be used in determining the
charge-charge neighbor distance for all monovalent atoms in the molecular system. Its use causes all
monovalent atoms to be treated the same as their attached atoms for purposes of including or scaling
1-2, 1-3 and 1-4 interactions. This option works only for the simple charge-charge electrostatic
potential; it does not affect bond dipole or atomic multipole potentials. The NEIGHBOR-GROUPS
scheme is similar to that used by some common force fields such as ENCAD.

NEIGHBOR-LIST This keyword turns on pairwise neighbor lists for partial charge electrostatics,
polarize multipole electrostatics and any of the van der Waals potentials. This method will yield
identical energetic results to the standard double loop method.

NEUTRAL-GROUPS This keyword causes the attached atom to be used in determining the charge-
charge interaction cutoff distance for all monovalent atoms in the molecular system. Its use reduces
cutoff discontinuities by avoiding splitting many of the largest charge separations found in typical
molecules. Note that this keyword does not rigorously implement the usual concept of a “neutral
group" as used in the literature with AMBER/OPLS and other force fields. This option works only for
the simple charge-charge electrostatic potential; it does not affect bond dipole or atomic multipole
potentials.

NEWHESS [integer] Sets the number of algorithmic iterations between recomputation of the
Hessian matrix. At present this keyword applies exclusively to optimizations using the Truncated
Newton method. The default value in the absence of this keyword is 1, i.e, the Hessian is computed
on every iteration.

NEXTITER [integer] Sets the iteration number to be used for the first iteration of the current
computation. At present this keyword applies to optimization procedures where its use can effect
convergence criteria, timing of restarts, and so forth. The default in the absence of this keyword is to
take the initial iteration as iteration 1.

NOSE-MASS [real] This keyword sets the mass of particles making up the Nose-Hoover chain in
that thermostating method. The default in the absence of the NOSE-MASS keyword is to use a mass of
0.1.

NOVERSION Turns off the use of version numbers appended to the end of filenames as the method
for generating filenames for updated copies of an existing file. The presence of this keyword results
in direct use of input file names without a search for the highest available version, and requires the

48 TINKER User's Guide 48

entry of specific output file names in many additional cases. By default, in the absence of this
keyword, TINKER generates and attaches version numbers in a manner similar to the Digital
OpenVMS operating system. For example, subsequent new versions of the file molecule.xyz
would be written first to the file molecule.xyz_2, thentomolecule.xyz_3, etc.

OCTAHEDRON Specifies that the periodic “box" is a truncated octahedron with maximal distance
across the truncated octahedron as given by the A-AXIS keyword. All other unit cell and periodic box
size-defining keywords are ignored if the OCTAHEDRON keyword is present.

OPBEND [2 integers & 1 real] This keyword provides the values for a single Allinger MM-style
out-of-plane angle bending potential parameter. The first integer modifier is the atom class of the
central trigonal atom and the second integer is the atom class of the out-of-plane atom. The real
number modifier gives the force constant value for the out-of-plane angle. The default units for the
force constant are kcal/mole /radian?, but this can be controlled via the OPBENDUNIT keyword.

OPBENDTERM [NONE/ONLY] This keyword controls use of the Allinger MM-style out-of-plane
bending potential energy term. In the absence of a modifying option, this keyword turns on use of the
potential. The NONE option turns off use of this potential energy term. The ONLY option turns off all
potential energy terms except for this one.

OPBENDUNIT [real] Sets the scale factor needed to convert the energy value computed by the
Allinger MM-style out-of-plane bending potential into units of kcal/mole. The correct value is force
field dependent and typically provided in the header of the master force field parameter file. The
default of (1/180)2 = 0.0003046 is used, if the OPBENDUNIT keyword is not given in the force field
parameter file or the keyfile.

OPDIST [4 integers & 1 real] This keyword provides the values for a single out-of-plane distance
potential parameter. The first integer modifier is the atom class of the central trigonal atom and the
three following integer modifiers are the atom classes of the three attached atoms. The real number
modifier is the force constant for the harmonic function of the out-of-plane distance of the central
atom. The default units for the force constant are kcal/mole/~2, but this can be controlled via the
OPDISTUNIT keyword.

OPDISTTERM [NONE/ONLY] This keyword controls use of the out-of-plane distance potential
energy term. In the absence of a modifying option, this keyword turns on use of the potential. The
NONE option turns off use of this potential energy term. The ONLY option turns off all potential
energy terms except for this one.

OPDISTUNIT [real] Sets the scale factor needed to convert the energy value computed by the out-
of-plane distance potential into units of kcal/mole. The correct value is force field dependent and
typically provided in the header of the master force field parameter file. The default value of 1.0 is
used, if the OPDISTUNIT keyword is not given in the force field parameter file or the keyfile.

OVERWRITE Causes TINKER programs, such as minimizations, that output intermediate
coordinate sets to create a single disk file for the intermediate results which is successively
overwritten with the new intermediate coordinates as they become available. This keyword is
essentially the opposite of the SAVECYCLE keyword.

PARAMETERS [file name] Provides the name of the force field parameter file to be used for the
current TINKER calculation. The standard file name extension for parameter files, .prm, is an
optional part of the file name modifier. The default in the absence of the PARAMETERS keyword is to

49 TINKER User's Guide 49

look for a parameter file with the same base name as the molecular system and ending in the .prm
extension. If a valid parameter file is not found, the user will asked to provide a file name
interactively.

PIATOM [1 integer & 3 reals] This keyword provides the values for the pisystem MO potential
parameters for a single atom class belonging to a pisystem.

PIBOND |[2 integers & 2 reals] This keyword provides the values for the pisystem MO potential
parameters for a single type of pisystem bond.

PIBOND4 [2 integers & 2 reals] This keyword provides the values for the pisystem MO potential
parameters for a single type of pisystem bond contained in a 4-membered ring.

PIBONDS [2 integers & 2 reals] This keyword provides the values for the pisystem MO potential
parameters for a single type of pisystem bond contained in a 5-membered ring.

PISYSTEM [integer list] This keyword sets the atoms within a molecule that are part of a
conjugated m-system. The keyword is followed on the same line by a list of atom numbers and/or
atom ranges that constitute the n-system. The Allinger MM force fields use this information to set up
an MO calculation used to scale bond and torsion parameters involving n-system atoms.

PITORS [2 integers & 1 real] This keyword provides the values for a single pi-orbital torsional
angle potential parameter. The two integer modifiers give the atom class numbers for the atoms
involved in the central bond of the torsional angle to be parameterized. The real modifier gives the
value of the 2-fold Fourier amplitude for the torsional angle between p-orbitals centered on the
defined bond atom classes. The default units for the stretch-torsion force constant can be controlled
via the PITORSUNIT keyword.

PITORSTERM [NONE/ONLY] This keyword controls use of the pi-orbital torsional angle potential
energy term. In the absence of a modifying option, this keyword turns on use of the potential. The
NONE option turns off use of this potential energy term. The ONLY option turns off all potential
energy terms except for this one.

PITORSUNIT [real] Sets the scale factor needed to convert the energy value computed by the pi-
orbital torsional angle potential into units of kcal/mole. The correct value is force field dependent
and typically provided in the header of the master force field parameter file. The default value of 1.0
is used, if the PITORSUNIT keyword is not given in the force field parameter file or the keyfile.

PME-GRID [3 integers] This keyword sets the dimensions of the charge grid used during particle
mesh Ewald summation. The three modifiers give the size along the X-, Y- and Z-axes, respectively. If
either the Y- or Z-axis dimensions are omitted, then they are set equal to the X-axis dimension. The
default in the absence of the PME-GRID keyword is to set the grid size along each axis to the smallest
power of 2, 3 and/or 5 which is at least as large as 1.5 times the axis length in Angstoms. Note that
the FFT used by PME is not restricted to, but is most efficient for, grid sizes which are powers of 2, 3
and/or 5.

PME-ORDER [integer] This keyword sets the order of the B-spline interpolation used during
particle mesh Ewald summation. A default value of 8 is used in the absence of the PME-ORDER
keyword.

50 TINKER User's Guide 50

POLAR-12-SCALE [real] This keyword provides a multiplicative scale factor that is applied to
polarization interactions between 1-2 polarization groups, i.e., pairs of atoms that are in directly
connected polarization groups. The default value of 0.0 is used, if the POLAR-12-SCALE keyword is
not given in either the parameter file or the keyfile.

POLAR-13-SCALE [real] This keyword provides a multiplicative scale factor that is applied to
polarization interactions between 1-3 polarization groups, i.e., pairs of atoms that are in polarization
groups separated by one other group. The default value of 0.0 is used, if the POLAR-13-SCALE
keyword is not given in either the parameter file or the keyfile.

POLAR-14-SCALE [real] This keyword provides a multiplicative scale factor that is applied to
polarization interactions between 1-4 polarization groups, i.e., pairs of atoms that are in polarization
groups separated by two other groups. The default value of 1.0 is used, if the POLAR-14-SCALE
keyword is not given in either the parameter file or the keyfile.

POLAR-15-SCALE [real] This keyword provides a multiplicative scale factor that is applied to
polarization interactions between 1-5 polarization groups, i.e., pairs of atoms that are in polarization
groups separated by three other groups. The default value of 1.0 is used, if the POLAR-15-SCALE
keyword is not given in either the parameter file or the keyfile.

POLAR-DAMP [2 reals] Controls the strength of the damping function applied to induced dipoles
and dipole polarization interaction energies. The first modifier sets the radius in Angstoms of a
hypothetical atom with unit polarizability, while the second modifier sets the scale factor for the
exponent of the damping function. The default values for the radius and the scale factor are 1.662
and 1.0, respectively. Damping is eliminated entirely by using this keyword to set the radius value to
Zero.

POLAR-EPS [real] This keyword sets the convergence criterion applied during computation of
self-consistent induced dipoles. The calculation is deemed to have converged when the rms change
(in Debyes) of the induced dipoles at all polarizable sites is less than the value specified with this
keyword. The default value in the absence of the keyword is 10-¢ Debyes.

POLAR-SOR [real] Sets a successive overrelaxation (SOR) factor for use in computation of induced
atomic dipoles. Optimal values for this keyword will speed the induced dipole calculation, and poor
values can result in convergence failure. The default value in the absence of the POLAR-SOR keyword
is 0.7 which often a reasonable value when short-range intramolecular polarization is present. For
models lacking intramolecular polarization, keyword values closer to 1.0 may be optimal.

POLARIZATION [DIRECT/MUTUAL] Selects between the use of direct and mutual dipole
polarization for force fields that incorporate the polarization term. The DIRECT modifier avoids an
iterative calculation by using only the permanent electric field in computation of induced dipoles.
The MUTUAL option, which is the default in the absence of the POLARIZATION keyword, iterates the
induced dipoles to self-consistency.

POLARIZE [1 integer, 1 real & up to 4 integers] This keyword provides the values for a single
atomic dipole polarizability parameter. The integer modifier, if positive, gives the atom type number
for which a polarizability parameter is to be defined. If the first integer modifier is negative, then the
parameter value to follow applies only to the individual atom whose atom number is the negative of
the modifier. The real number modifier gives the value of the dipole polarizability in ~3. The final
integer modifiers list the atom type numbers of atoms directly bonded to the current atom and which
will be considered to be part of the current atom's polarization group.

51 TINKER User's Guide 51

POLARIZETERM [NONE/ONLY] This keyword controls use of the atomic dipole polarization
potential energy term. In the absence of a modifying option, this keyword turns on use of the
potential. The NONE option turns off use of this potential energy term. The ONLY option turns off all
potential energy terms except for this one.

POLYMER-CUTOFF [real] Sets the value of an additional cutoff parameter needed for infinite
polymer systems. This value must be set to less than half the minimal periodic box dimension and
should be greater than the largest possible interatomic distance that can be subject to scaling or
exclusion as a local electrostatic or van der Waals interaction. The default in the absence of the
POLYMER-CUTOFF keyword is 5.5 Angstroms.

PRINTOUT [integer] A general parameter for iterative procedures such as minimizations that sets
the number of iterations between writes of status information to the standard output. The default
value in the absence of the keyword is 1, i.e., the calculation status is given every iteration.

RADIUSRULE [ARITHMETIC/GEOMETRIC/CUBIC-MEAN] Sets the functional form of the radius
combining rule for heteroatomic van der Waals potential energy interactions. The default in the
absence of the RADIUSRULE keyword is to use the arithmetic mean combining rule to get radii for
heteroatomic interactions.

RADIUSSIZE [RADIUS/DIAMETER] Determines whether the atom size values given in van der
Waals parameters read from VDW keyword statements are interpreted as atomic radius or diameter
values. The default in the absence of the RADIUSSIZE keyword is to assume that vdw size parameters
are given as radius values.

RADIUSTYPE [R-MIN/SIGMA] Determines whether atom size values given in van der Waals
parameters read from VDW keyword statements are interpreted as potential minimum (R) or L]-

style sigma (o) values. The default in the absence of the RADIUSTYPE keyword is to assume that vdw
size parameters are givenas R . values.

RANDOMSEED [integer] Followed by an integer value, this keyword sets the initial seed value for
the random number generator used by TINKER. Setting RANDOMSEED to the same value as an
earlier run will allow exact reproduction of the earlier calculation. (Note that this will not hold across
different machine types.) RANDOMSEED should be set to a positive integer less than about 2 billion.
In the absence of the RANDOMSEED keyword the seed is chosen “randomly" based upon the number
of seconds that have elapsed in the current decade.

RATTLE [BONDS/ANGLES/DIATOMIC/TRIATOMIC/WATER] Invokes the rattle algorithm, a
velocity version of shake, on portions of a molecular system during a molecular dynamic calculation.
The RATTLE keyword can be followed by any of the modifiers shown, in which case all occurrences
of the modifier species are constrained at ideal values taken from the bond and angle parameters of
the force field in use. In the absence of any modifier, RATTLE constrains all bonds to hydrogen atoms
atideal bond lengths.

RATTLE-DISTANCE [2 integers] This keyword allows the use of a "Rattle" constraint between
the two atoms whose numbers are specified on the keyword line. If the two atoms are involved in a
covalent bond, then their distance is constrained to the ideal bond length from the force field. For
nonbonded atoms, the rattle constraint is fixed at their distance in the input coordinate file.

RATTLE-LINE [integer] This keyword

52 TINKER User's Guide 52

RATTLE-ORIGIN [integer] This keyword
RATTLE-PLANE [integer] This keyword

REACTIONFIELD [2 reals & 1 integer] This keyword provides parameters needed for the
reaction field potential energy calculation. The two real modifiers give the radius of the dielectric
cavity and the ratio of the bulk dielectric outside the cavity to that inside the cavity. The integer
modifier gives the number of terms in the reaction field summation to be used. In the absence of the
REACTIONFIELD keyword, the default values are a cavity of radius 1000000 =, a dielectric ratio of 80
and use of only the first term of the reaction field summation.

REDUCE [real] Specifies the fraction between zero and one by which the path between starting
and final conformational state will be shortened at each major cycle of the transition state location
algorithm implemented by the SADDLE program. This causes the path endpoints to move up and out
of the terminal structures toward the transition state region. In favorable cases, a nonzero value of
the REDUCE modifier can speed convergence to the transition state. The default value in the absence
of the REDUCE keyword is zero.

RESTRAIN-ANGLE [3 integers & 3 reals] This keyword implements a flat-welled harmonic
potential that can be used to restrain the angle between three atoms to lie within a specified angle
range. The integer modifiers contain the atom numbers of the three atoms whose angle is to be
restrained. The first real modifier is the force constant in kcal/degree? for the restraint. The last two
real modifiers give the lower and upper bounds in degrees on the allowed angle values. If the angle
lies between the lower and upper bounds, the restraint potential is zero. Outside the bounds, the
harmonic restraint is applied. If the angle range modifiers are omitted, then the atoms are restrained
to the angle found in the input structure. If the force constant is also omitted, a default value of 10.0 is
used.

RESTRAIN-DISTANCE [2 integers & 3 reals] This keyword implements a flat-welled harmonic
potential that can be used to restrain two atoms to lie within a specified distance range. The integer
modifiers contain the atom numbers of the two atoms to be restrained. The first real modifier
specifies the force constant in kcal/~2 for the restraint. The next two real modifiers give the lower
and upper bounds in xngstroms on the allowed distance range. If the interatomic distance lies
between these lower and upper bounds, the restraint potential is zero. Outside the bounds, the
harmonic restraint is applied. If the distance range modifiers are omitted, then the atoms are
restrained to the interatomic distance found in the input structure. If the force constant is also
omitted, a default value of 100.0 is used.

RESTRAIN-GROUPS [2 integers & 3 reals] This keyword implements a flat-welled harmonic
distance restraint between the centers-of-mass of two groups of atoms. The integer modifiers are the
numbers of the two groups which must be defined separately via the GROUP keyword. The first real
modifier is the force constant in kcal/~2 for the restraint. The last two real modifiers give the lower
and upper bounds in ®ngstroms on the allowed intergroup center-of-mass distance values. If the
distance range modifiers are omitted, then the groups are restrained to the distance found in the
input structure. If the force constant is also omitted, a default value of 100.0 is used.

RESTRAIN-POSITION [1 integer & 5 reals] This keyword provides the ability to restrain an
individual atom to a specified coordinate position. The initial integer modifier contains the atom
number of the atom to be restrained. The first real modifier sets the force constant in kcal/~2 for the
harmonic restraint potential. The next three real number modifiers give the X-, Y- and Z-coordinates

53 TINKER User's Guide 53

to which the atom is tethered. The final real modifier defines a sphere around the specified
coordinates within which the restraint value is zero. If the exclusion sphere radius is omitted, it is
taken to be zero. If the coordinates are omitted, then the atom is restrained to the origin. If the force
constant is also omitted, a default value of 100.0 is used.

RESTRAIN-TORSION [4 integers & 3 reals] This keyword implements a flat-welled harmonic
potential that can be used to restrain the torsional angle between four atoms to lie within a specified
angle range. The initial integer modifiers contains the atom numbers of the four atoms whose
torsional angle, computed in the atom order listed, is to be restrained. The first real modifier gives a
force constant in kcal/degree? for the restraint. The last two real modifiers give the lower and upper
bounds in degrees on the allowed torsional angle values. The angle values given can wrap around
across -180 and +180 degrees. Outside the allowed angle range, the harmonic restraint is applied. If
the angle range modifiers are omitted, then the atoms are restrained to the torsional angle found in
the input structure. If the force constant is also omitted, a default value of 1.0 is used.

RESTRAINTERM [NONE/ONLY] This keyword controls use of the restraint potential energy
terms. In the absence of a modifying option, this keyword turns on use of these potentials. The NONE
option turns off use of these potential energy terms. The ONLY option turns off all potential energy
terms except for these terms.

RXNFIELDTERM [NONE/ONLY] This keyword controls use of the reaction field continuum
solvation potential energy term. In the absence of a modifying option, this keyword turns on use of
the potential. The NONE option turns off use of this potential energy term. The ONLY option turns off
all potential energy terms except for this one.

SADDLEPOINT The presence of this keyword allows Newton-style second derivative-based
optimization routine used by NEWTON, NEWTROT and other programs to converge to saddlepoints
as well as minima on the potential surface. By default, in the absence of the SADDLEPOINT keyword,
checks are applied that prevent convergence to stationary points having directions of negative
curvature.

SAVE-CYCLE This keyword causes TINKER programs, such as minimizations, that output
intermediate coordinate sets to save each successive set to the next consecutively numbered cycle
file. The SAVE-CYCLE keyword is the opposite of the OVERWRITE keyword.

SAVE-FORCE This keyword causes TINKER molecular dynamics calculations to save the values of
the force components on each atom to a separate cycle file. These files are written whenever the
atomic coordinate snapshots are written during the dynamics run. Each atomic force file name
contains as a suffix the cycle number followed by the letter £.

SAVE-INDUCED This keyword causes TINKER molecular dynamics calculations that involve
polarizable atomic multipoles to save the values of the induced dipole components on each
polarizable atom to a separate cycle file. These files are written whenever the atomic coordinate
snapshots are written during the dynamics run. Each induced dipole file name contains as a suffix the
cycle number followed by the letter u.

SAVE-VELOCITY This keyword causes TINKER molecular dynamics calculations to save the values
of the velocity components on each atom to a separate cycle file. These files are written whenever the
atomic coordinate snapshots are written during the dynamics run. Each velocity file name contains
as a suffix the cycle number followed by the letter v.

54 TINKER User's Guide 54

SLOPEMAX [real] This keyword and its modifying value set the maximum allowed size of the ratio
between the current and initial projected gradients during the line search phase of conjugate
gradient or truncated Newton optimizations. If this ratio exceeds SLOPEMAX, then the initial step
size is reduced by a factor of 10. The default value is usually set to 10000.0 when not specified via the
SLOPEMAX keyword.

SMOOTHING [DEM/GDA/TOPHAT/STOPHAT] This keyword activates the potential energy
smoothing methods. Several variations are available depending on the value of the modifier used:
DEM= Diffusion Equation Method with a standard Gaussian kernel; GDA= Gaussian Density
Annealing as proposed by the Straub group; TOPHAT= a local DEM-like method using a finite range
“tophat" kernel; STOPHAT= shifted tophat smoothing.

SOLVATE [ASP/SASA/ONION/STILL/HCT/ACE/GBSA] Use of this keyword during energy
calculations with any of the standard force fields turns on a continuum solvation free energy term.
Several algorithms are available based on the modifier used: ASP= Eisenberg-McLachlan ASP method
using the Wesson-Eisenberg vacuum-to-water parameters; SASA= the Ooi-Scheraga SASA method;
ONION= the original 1990 Still “Onion-shell" GB/SA method; STILL= the 1997 analytical GB/SA
method from Still's group; HCT= the pairwise descreening method of Hawkins, Cramer and Truhlar;
ACE= the Analytical Continuum Electrostatics solvation method from the Karplus group; GBSA=
equivalent to the STILL modifier. At present, GB/SA-style methods are only valid for force fields that
use simple partial charge electrostatics.

SOLVATETERM [NONE/ONLY] This keyword controls use of the macroscopic solvation potential
energy term. In the absence of a modifying option, this keyword turns on use of the potential. The
NONE option turns off use of this potential energy term. The ONLY option turns off all potential
energy terms except for this one.

SPACEGROUP [name] This keyword selects the space group to be used in manipulation of crystal
unit cells and asymmetric units. The name option must be chosen from one of the following currently
implemented space groups: P1, P1(-), P21, Cc, P21/a, P21/n, P21/c, C2/c, P212121, Pna21, Pn21a,
Cmc21, Pccn, Pben, Pbca, P41, 141/a, P4(-)21c, P4(-)m2, R3¢, P6(3)/mcm, Fm3(-)m, Im3(-)m.

SPHERE [4 reals, or 1 integer & 1 real] This keyword provides an alternative to the ACTIVE and
INACTIVE keywords for specification of subsets of active atoms. If four real number modifiers are
provided, the first three are taken as X-, Y- and Z-coordinates and the fourth is the radius of a sphere
centered at these coordinates. In this case, all atoms within the sphere at the start of the calculation
are active throughout the calculation, while all other atoms are inactive. Similarly if one integer and
real number are given, an “active" sphere with radius set by the real is centered on the system atom
with atom number given by the integer modifier. Multiple SPHERE keyword lines can be present in a
single keyfile, and the list of active atoms specified by the spheres is cumulative.

STEEPEST-DESCENT This keyword forces the L-BFGS optimization routine used by the MINIMIZE
program and other programs to perform steepest descent minimization. This option can be useful in
conjunction with small step sizes for following minimum energy paths, but is generally inferior to the
L-BFGS default for most optimization purposes.

STEPMAX [real] This keyword and its modifying value set the maximum size of an individual step
during the line search phase of conjugate gradient or truncated Newton optimizations. The step size
is computed as the norm of the vector of changes in parameters being optimized. The default value
depends on the particular TINKER program, but is usually in the range from 1.0 to 5.0 when not
specified via the STEPMAX keyword.

55 TINKER User's Guide 55

STEPMIN [real] This keyword and its modifying value set the minimum size of an individual step
during the line search phase of conjugate gradient or truncated Newton optimizations. The step size
is computed as the norm of the vector of changes in parameters being optimized. The default value is
usually set to about 10716 when not specified via the STEPMIN keyword.

STRBND [1 integer & 3 reals] This keyword provides the values for a single stretch-bend cross
term potential parameter. The integer modifier gives the atom class number for the central atom of
the bond angle involved in stretch-bend interactions. The real number modifiers give the force
constant values to be used when the central atom of the angle is attached to 0, 1 or 2 additional
hydrogen atoms, respectively. The default units for the stretch-bend force constant are kcal/mole/=-
degree, but this can be controlled via the STRBNDUNIT keyword.

STRBNDTERM [NONE/ONLY] This keyword controls use of the bond stretching-angle bending
cross term potential energy. In the absence of a modifying option, this keyword turns on use of the
potential. The NONE option turns off use of this potential energy term. The ONLY option turns off all
potential energy terms except for this one.

STRBNDUNIT [real] Sets the scale factor needed to convert the energy value computed by the
bond stretching-angle bending cross term potential into units of kcal/mole. The correct value is force
field dependent and typically provided in the header of the master force field parameter file. The
default value of 1.0 is used, if the STRBNDUNIT keyword is not given in the force field parameter file
or the keyfile.

STRTORS [2 integers & 1 real] This keyword provides the values for a single stretch-torsion
cross term potential parameter. The two integer modifiers give the atom class numbers for the atoms
involved in the central bond of the torsional angles to be parameterized. The real modifier gives the
value of the stretch-torsion force constant for all torsional angles with the defined central bond atom
classes. The default units for the stretch-torsion force constant can be controlled via the
STRTORUNIT keyword.

STRTORTERM [NONE/ONLY] This keyword controls use of the bond stretching-torsional angle
cross term potential energy. In the absence of a modifying option, this keyword turns on use of the
potential. The NONE option turns off use of this potential energy term. The ONLY option turns off all
potential energy terms except for this one.

STRTORUNIT [real] Sets the scale factor needed to convert the energy value computed by the
bond stretching-torsional angle cross term potential into units of kcal/mole. The correct value is
force field dependent and typically provided in the header of the master force field parameter file.
The default value of 1.0 is used, if the STRTORUNIT keyword is not given in the force field parameter
file or the keyfile.

TAPER [real] This keyword allows modification of the cutoff windows for nonbonded potential
energy interactions. The nonbonded terms are smoothly reduced from their standard value at the
beginning of the cutoff window to zero at the far end of the window. The far end of the window is
specified via the CUTOFF keyword or its potential function specific variants. The modifier value
supplied with the TAPER keyword sets the beginning of the cutoff window. The modifier can be given
either as an absolute distance value in Angstroms, or as a fraction between zero and one of the
CUTOFF distance. The default value in the absence of the TAPER keyword ranges from 0.65 to 0.9 of
the CUTOFF distance depending on the type of potential function. The windows are implemented via
polynomial-based switching functions, in some cases combined with energy shifting.

56 TINKER User's Guide 56

TAU-PRESSURE [real] Sets the coupling time in picoseconds for the Groningen-style pressure bath
coupling used to control the system pressure during molecular dynamics calculations. A default value
of 2.0 is used for TAU-PRESSURE in the absence of the keyword.

TAU-TEMPERATURE [real] Sets the coupling time in picoseconds for the Groningen-style
temperature bath coupling used to control the system temperature during molecular dynamics
calculations. A default value of 0.1 is used for TAU-TEMPERATURE in the absence of the keyword.

THERMOSTAT [BERENDSEN/ANDERSEN] This keyword selects a thermostat algorithm for use
during molecular dynamics. Two modifiers are available, a Berendsen bath coupling method, and an
Andersen stochastic collision method. The default in the absence of the THERMOSTAT keyword is to
use the BERENDSEN algorithm.

TORSION [4 integers & up to 6 real/real/integer triples] This keyword provides the values for
a single torsional angle parameter. The first four integer modifiers give the atom class numbers for
the atoms involved in the torsional angle to be defined. Each of the remaining triples of
real/real/integer modifiers give the amplitude, phase offset in degrees and periodicity of a particular
torsional function term, respectively. Periodicities through 6-fold are allowed for torsional
parameters.

TORSION4 [4 integers & up to 6 real/real/integer triples] This keyword provides the values for
a single torsional angle parameter specific to atoms in 4-membered rings. The first four integer
modifiers give the atom class numbers for the atoms involved in the torsional angle to be defined.
The remaining triples of real number and integer modifiers operate as described above for the
TORSION keyword.

TORSIONS [4 integers & up to 6 real/real/integer triples] This keyword provides the values for
a single torsional angle parameter specific to atoms in 5-membered rings. The first four integer
modifiers give the atom class numbers for the atoms involved in the torsional angle to be defined.
The remaining triples of real number and integer modifiers operate as described above for the
TORSION keyword.

TORSIONTERM [NONE/ONLY] This keyword controls use of the torsional angle potential energy
term. In the absence of a modifying option, this keyword turns on use of the potential. The NONE
option turns off use of this potential energy term. The ONLY option turns off all potential energy
terms except for this one.

TORSIONUNIT [real] Sets the scale factor needed to convert the energy value computed by the
torsional angle potential into units of kcal/mole. The correct value is force field dependent and
typically provided in the header of the master force field parameter file. The default value of 1.0 is
used, if the TORSIONUNIT keyword is not given in the force field parameter file or the keyfile.

TORTOR [7 integers, then multiple lines of 2 integers and 1 real] This keyword is used to
provide the values for a single torsion-torsion parameter. The first five integer modifiers give the
atom class numbers for the atoms involved in the two adjacent torsional angles to be defined. The
last two integer modifiers contain the number of data grid points that lie along each axis of the
torsion-torsion map. For example, this value will be 13 for a 30 degree torsional angle spacing, ie.,
360/30 = 12, but 13 values are required since data values for -180 and +180 degrees must both be
supplied. The subsequent lines contain the torsion-torsion map data as the integer values in degrees
of each torsional angle and the target energy value in kcal/mole.

57 TINKER User's Guide 57

TORTORTERM [NONE/ONLY] This keyword controls use of the torsion-torsion potential energy
term. In the absence of a modifying option, this keyword turns on use of the potential. The NONE
option turns off use of this potential energy term. The ONLY option turns off all potential energy
terms except for this one.

TORTORUNIT [real] Sets the scale factor needed to convert the energy value computed by the
torsion-torsion potential into units of kcal/mole. The correct value is force field dependent and
typically provided in the header of the master force field parameter file. The default value of 1.0 is
used, if the TORTORUNIT keyword is not given in the force field parameter file or the keyfile.

TRIAL-DISTANCE [CLASSIC/RANDOM/TRICOR/HAVEL integer/PAIRWISE integer] Sets
the method for selection of a trial distance matrix during distance geometry computations. The
keyword takes a modifier that selects the method to be used. The HAVEL and PAIRWISE modifiers
also require an additional integer value that specifies the number of atoms used in metrization and
the percentage of metrization, respectively. The default in the absence of this keyword is to use the
PAIRWISE method with 100 percent metrization. Further information on the various methods is
given with the description of the TINKER distance geometry program.

TRIAL-DISTRIBUTION [real] Sets the initial value for the mean of the Gaussian distribution used
to select trial distances between the lower and upper bounds during distance geometry
computations. The value given must be between 0 and 1 which represent the lower and upper
bounds respectively. This keyword is rarely needed since TINKER will usually be able to choose a
reasonable value by default.

TRUNCATE Causes all distance-based nonbond energy cutoffs to be sharply truncated to an energy
of zero at distances greater than the value set by the cutoff keyword(s) without use of any shifting,
switching or smoothing schemes. At all distances within the cutoff sphere, the full interaction energy
is computed.

UREY-CUBIC [real] Sets the value of the cubic term in the Taylor series expansion form of the
Urey-Bradley potential energy. The real number modifier gives the value of the coefficient as a
multiple of the quadratic coefficient. The default value in the absence of the UREY-CUBIC keyword is
zero; i.e., the cubic Urey-Bradley term is omitted.

UREY-QUARTIC [real] Sets the value of the quartic term in the Taylor series expansion form of the
Urey-Bradley potential energy. The real number modifier gives the value of the coefficient as a
multiple of the quadratic coefficient. The default value in the absence of the UREY-QUARTIC keyword
is zero; i.e., the quartic Urey-Bradley term is omitted.

UREYBRAD [3 integers & 2 reals] This keyword provides the values for a single Urey-Bradley
cross term potential parameter. The integer modifiers give the atom class numbers for the three
kinds of atoms involved in the angle for which a Urey-Bradley term is to be defined. The real number
modifiers give the force constant value for the term and the target value for the 1-3 distance in =. The
default units for the force constant are kcal/mole/~2, but this can be controlled via the UREYUNIT
keyword.

UREYTERM [NONE/ONLY] This keyword controls use of the Urey-Bradley potential energy term.
In the absence of a modifying option, this keyword turns on use of the potential. The NONE option
turns off use of this potential energy term. The ONLY option turns off all potential energy terms
except for this one.

58 TINKER User's Guide 58

UREYUNIT [real] Sets the scale factor needed to convert the energy value computed by the Urey-
Bradley potential into units of kcal/mole. The correct value is force field dependent and typically
provided in the header of the master force field parameter file. The default value of 1.0 is used, if the
UREYUNIT keyword is not given in the force field parameter file or the keyfile.

VDW [1 integer & 3 reals] This keyword provides values for a single van der Waals parameter.
The integer modifier, if positive, gives the atom class number for which vdw parameters are to be
defined. Note that vdw parameters are given for atom classes, not atom types. The three real number
modifiers give the values of the atom size in =, homoatomic well depth in kcal/mole, and an optional
reduction factor for univalent atoms.

VDW-12-SCALE [real] This keyword provides a multiplicative scale factor that is applied to van
der Waals potential interactions between 1-2 connected atoms, i.e., atoms that are directly bonded.
The default value of 0.0 is used, if the VDW-12-SCALE keyword is not given in either the parameter
file or the keyfile.

VDW-13-SCALE [real] This keyword provides a multiplicative scale factor that is applied to van
der Waals potential interactions between 1-3 connected atoms, i.e., atoms separated by two covalent
bonds. The default value of 0.0 is used, if the VDW-13-SCALE keyword is not given in either the
parameter file or the keyfile.

VDW-14-SCALE [real] This keyword provides a multiplicative scale factor that is applied to van
der Waals potential interactions between 1-4 connected atoms, ie., atoms separated by three
covalent bonds. The default value of 1.0 is used, if the VDW-14-SCALE keyword is not given in either
the parameter file or the keyfile.

VDW-15-SCALE [real] This keyword provides a multiplicative scale factor that is applied to van
der Waals potential interactions between 1-5 connected atoms, i.e., atoms separated by four covalent
bonds. The default value of 1.0 is used, if the VDW-15-SCALE keyword is not given in either the
parameter file or the keyfile.

VDW-CUTOFF [real] Sets the cutoff distance value in Angstroms for van der Waals potential
energy interactions. The energy for any pair of van der Waals sites beyond the cutoff distance will be
set to zero. Other keywords can be used to select a smoothing scheme near the cutoff distance. The
default cutoff distance in the absence of the VDW-CUTOFF keyword is infinite for nonperiodic
systems and 9.0 for periodic systems.

VDW-TAPER [real] This keyword allows modification of the cutoff windows for van der Waals
potential energy interactions. It is similar in form and action to the TAPER keyword, except that its
value applies only to the vdw potential. The default value in the absence of the VDW-TAPER keyword
is to begin the cutoff window at 0.9 of the vdw cutoff distance.

VDW14 [1 integer & 2 reals] This keyword provides values for a single van der Waals parameter
for use in 1-4 nonbonded interactions. The integer modifier, if positive, gives the atom class number
for which vdw parameters are to be defined. Note that vdw parameters are given for atom classes,
not atom types. The two real number modifiers give the values of the atom size in = and the
homoatomic well depth in kcal/mole. Reduction factors, if used, are carried over from the VDW
keyword for the same atom class.

VDWPR [2 integers & 2 reals] This keyword provides the values for the vdw parameters for a
single special heteroatomic pair of atoms. The integer modifiers give the pair of atom class numbers

59 TINKER User's Guide 59

for which special vdw parameters are to be defined. The two real number modifiers give the values of
the minimum energy contact distance in = and the well depth at the minimum distance in kcal/mole.

VDWTERM [NONE/ONLY] This keyword controls use of the van der Waals repulsion-dispersion
potential energy term. In the absence of a modifying option, this keyword turns on use of the
potential. The NONE option turns off use of this potential energy term. The ONLY option turns off all
potential energy terms except for this one.

VDWTYPE [LENNARD-JONES / BUCKINGHAM / BUFFERED-14-7 / MM3-HBOND / GAUSSIAN]
Sets the functional form for the van der Waals potential energy term. The text modifier gives the
name of the functional form to be used. The GAUSSIAN modifier value implements a two or four
Gaussian fit to the corresponding Lennard-Jones function for use with potential energy smoothing
schemes. The default in the absence of the VDWTYPE keyword is to use the standard two parameter
Lennard-Jones function.

VERBOSE Turns on printing of secondary and informational output during a variety of TINKER
computations; a subset of the more extensive output provided by the DEBUG keyword.

WALL [real] Sets the radius of a spherical boundary used to maintain droplet boundary
conditions. The real modifier specifies the desired approximate radius of the droplet. In practice, an
artificial van der Waals wall is constructed at a fixed buffer distance of 2.5 = outside the specified
radius. The effect is that atoms which attempt to move outside the region defined by the droplet
radius will be forced toward the center.

WRITEOUT [integer] A general parameter for iterative procedures such as minimizations that
sets the number of iterations between writes of intermediate results (such as the current
coordinates) to disk file(s). The default value in the absence of the keyword is 1, i.e,, the intermediate
results are written to file on every iteration. Whether successive intermediate results are saved to
new files or replace previously written intermediate results is controlled by the OVERWRITE and
SAVE-CYCLE keywords.

60 TINKER User's Guide 60

8. Force Field Parameter Sets

The TINKER package is distributed with several force field parameter sets, implementing a selection
of widely used literature force fields as well as the TINKER force field currently under construction in
the Ponder lab. We try to exactly reproduce the intent of the original authors of our distributed,
third-party force fields. In all cases the parameter sets have been validated against literature reports,
results provided by the original developers, or calculations made with the authentic programs. With
the few exceptions noted below, TINKER calculations can be treated as authentic results from the
genuine force fields. A brief description of each parameter set, including some still in preparation and
not distributed with the current version, is provided below with lead literature references for the
force field:

AMOEBA.PRM

Parameters for the AMOEBA polarizable atomic multipole force field. As of the current TINKER
release, we have completed parametrization for a number of ions and small organic molecules. For
further information, or if you are interested in developing or testing parameters for other small
molecules, please contact the Ponder lab.

P. Ren and]J. W. Ponder, A Consistent Treatment of Inter- and Intramolecular Polarization in
Molecular Mechanics Calculations, J. Comput. Chem., 23, 1497-1506 (2002)

P. Ren and]. W. Ponder, Polarizable Atomic Multipole Water Model for Molecular Mechanics
Simulation, J. Phys. Chem. B, 107, 5933-5947 (2003)

P. Ren and]. W. Ponder, lon Solvation Thermodynamics from Simulation with a Polarizable Force
Field, A. Grossfield, J. Am. Chem. Soc., 125, 15671-15682 (2003)

AMOEBAPRO.PRM

Preliminary protein parameters for the AMOEBA polarizable atomic multipole force field. While the
distributed parameters are still subject to minor alteration as we continue validation, they are now
stable enough for other groups to begin using them. For further information, or if you are interested
in testing the protein parameter set, please contact the Ponder lab.

J. W. Ponder and D. A. Case, Force Fields for Protein Simulation, Adv. Prot. Chem., 66, 27-85 (2003)

P.Ren and J. W. Ponder, Polarizable Atomic Multipole-based Potential for Proteins: Model and
Parameterization, in preparation

AMBER94.PRM

AMBER (ff94 parameters for proteins and nucleic acids. Note that with their “Cornell" force field, the
Kollman group has devised separate, fully independent partial charge values for each of the N- and C-
terminal amino acid residues. At present, the terminal residue charges for TINKER's version maintain
the correct formal charge, but redistributed somewhat at the alpha carbon atoms from the original
Kollman group values. The total magnitude of the redistribution is less than 0.01 electrons in most
cases.

W. D. Cornell, P. Cieplak, C. I. Bayly, I. R. Gould, K. M. Merz, Jr., D. M. Ferguson, D. C. Spellmeyer, T. Fox,
J. W. Caldwell and P. A. Kollman, A Second Generation Force Field for the Simulation of Proteins,
Nucleic Acids, and Organic Molecules, J. Am. Chem. Soc., 117, 5179-5197 (1995) [ff94]

61 TINKER User's Guide 61

G. Moyna, H.]J. Williams, R.]. Nachman and A. I. Scott, Conformation in Solution and Dynamics of a
Structurally Constrained Linear Insect Kinin Pentapeptide Analogue, Biopolymers, 49, 403-413
(1999) [AIB charges]

W. S. Ross and C. C. Hardin, Ion-Induced Stabilization of the G-DNA Quadruplex: Free Energy
Perturbation Studies, J. Am. Chem. Soc., 116, 4363-4366 (1994) [alkali metal ions]

J. Aqvist, lon-Water Interaction Potentials Derived from Free Energy Perturbation Simulations, J.
Phys. Chem., 94,8021-8024, 1990 [alkaline earth lons, radii adapted for Amber combining rule]

Current force field parameter values and suggested procedures for development of parameters for
additional molecules are available from the Amber web site in the Case lab at Scripps,
http://amber.scripps.edu/

AMBER96.PRM

AMBER (ff96 parameters for proteins and nucleic acids. The only change from the ff94 parameter set
is in the torsional parameters for the protein phi/psi angles. These values were altered to give better
agreement with changes of ff96 with LMP2 QM results from the Friesner lab on alanine dipeptide
and tetrapeptide.

P. Kollman, R. Dixon, W. Cornell, T. Fox, C. Chipot and A. Pohorille, The Development/ Application of a
'Minimalist' Organic/Biochemical Molecular Mechanic Force Field using a Combination of ab Initio
Calculations and Experimental Data, in Computer Simulation of Biomolecular Systems, W. F. van
Gunsteren, P. K. Weiner, A.]. Wilkinson, eds., Volume 3, 83-96 (1997) [ff96]

Current force field parameter values and suggested procedures for development of parameters for
additional molecules are available from the Amber web site in the Case lab at Scripps,
http://amber.scripps.edu/

AMBER98.PRM

AMBER (ff98 parameters for proteins and nucleic acids. The only change from the ff94 parameter set
is in the glycosidic torsional parameters that control sugar pucker.

T. E. Cheatham III, P. Cieplak and P. A. Kollman, A Modified Version of the Cornell et al. Force Field
with Improved Sugar Pucker Phases and Helical Repeat, J. Biomol. Struct. Dyn., 16, 845-862 (1999)

Current force field parameter values and suggested procedures for development of parameters for
additional molecules are available from the Amber web site in the Case lab at Scripps,
http://amber.scripps.edu/

AMBER99.PRM

AMBER ff99 parameters for proteins and nucleic acids. The original partial charges from the ff94
parameter set are retained, but many of the bond, angle and torsional parameters have been revised
to provide better general agreement with experiment.

J. Wang, P. Cieplak and P. A. Kollman, How Well Does a Restrained Electrostatic Potential (RESP)
Model Perform in Calcluating Conformational Energies of Organic and Biological Molecules?, J.
Comput. Chem., 21, 1049-1074 (2000)

62 TINKER User's Guide 62

Current force field parameter values and suggested procedures for development of parameters for
additional molecules are available from the Amber web site in the Case lab at Scripps,
http://amber.scripps.edu/

CHARMM19.PRM

CHARMM19 united-atom parameters for proteins. The nucleic acid parameter are not yet
implemented. There are some differences between authentic CHARMM19 and the TINKER version
due to replacement of CHARMM impropers by torsions for cases that involve atoms not bonded to
the trigonal atom and TINKER's use of all possible torsions across a bond instead of a single torsion
per bond.

E. Neria, S. Fischer and M. Karplus, Simulation of Activation Free Energies in Molecular Systems, J.
Chem. Phys., 105, 1902-1921 (1996)

L. Nilsson and M. Karplus, Empirical Energy Functions for Energy Minimizations and Dynamics of
Nucleic Acids, J. Comput. Chem., 7, 591-616 (1986)

W. E. Reiher III, Theoretical Studies of Hydrogen Bonding, Ph.D. Thesis, Department of Chemistry,
Harvard University, Cambridge, MA, 1985

CHARMM22.PRM

CHARMM?27 all-atom parameters for proteins and lipids. Most of the nucleic acid and small model
compound parameters are not yet implemented. We plan to provide these additional parameters in
due course.

N. Foloppe and A. D. MacKerell, Jr., All-Atom Empirical Force Field for Nucleic Acids: 1) Parameter
Optimization Based on Small Molecule and Condensed Phase Macromolecular Target Data, J. Comput.
Chem., 21, 86-104 (2000) [CHARMM27]

N. Banavali and A. D. MacKerell, Jr., All-Atom Empirical Force Field for Nucleic Acids: 2) Application
to Molecular Dynamics Simulations of DNA and RNA in Solution, J. Comput. Chem., 21, 105-120
(2000)

A.D. MacKerrell, Jr., et al., All-Atom Empirical Potential for Molecular Modeling and Dynamics Studies
of Proteins, J. Phys. Chem. B, 102, 3586-3616 (1998) [CHARMM?22]

A. D. MacKerell, Jr.,]. Wiorkeiwicz-Kuczera and M. Karplus, An All-Atom Empirical Energy Function
for the Simulation of Nucleic Acids, J. Am. Chem. Soc., 117, 11946-11975 (1995)

S. E. Feller, D. Yin, R. W. Pastor and A. D. MacKerell, Jr., Molecular Dynamics Simulation of
Unsaturated Lipids at Low Hydration: Parametrization and Comparison with Diffraction Studies,
Biophysical Journal, 73, 2269-2279 (1997) [alkenes]

R. H. Stote and M. Karplus, Zinc Binding in Proteins and Solution - A Simple but Accurate Nonbonded
Representation, Proteins, 23, 12-31 (1995) [zinc ion]

Current and legacy parameter values are available from the CHARMM force field web site on Alex

MacKerell's Research Interests page at the University of Maryland School of Pharmacy,
https://rxsecure.umaryland.edu/research/amackere /research.html/

DUDEK.PRM

63 TINKER User's Guide 63

Protein-only parameters for the early 1990's TINKER force field with multipole values of Dudek and
Ponder. The current file contains only the multipole values from the 1995 paper by Dudek and
Ponder. This set is now superceeded by the more recent TINKER force field developed by Pengyu
Ren (see WATER.PRM, below).

M. J. Dudek and]. W. Ponder, Accurate Electrostatic Modelling of the Intramolecular Energy of
Proteins, J. Comput. Chem., 16, 791-816 (1995)

ENCAD.PRM

ENCAD parameters for proteins and nucleic acids. (in preparation)

M. Levitt, M. Hirshberg, R. Sharon and V. Daggett, Potential Energy Function and Parameters for
Simulations of the Molecular Dynamics of Protein and Nucleic Acids in Solution, Comp. Phys.
Commun., 91, 215-231 (1995)

M. Levitt, M. Hirshberg, R. Sharon, K. E. Laidig and V. Daggett, Calibration and Testing of a Water

Model for Simulation of the Molecular Dynamics of Protein and Nucleic Acids in Solution, J. Phys.
Chem. B, 101, 5051-5061 (1997) [F3C water]

HOCH.PRM
Simple NMR-NOE force field of Hoch and Stern.

J. C. Hoch and A. S. Stern, A Method for Determining Overall Protein Fold from NMR Distance
Restraints, J. Biomol. NMR, 2, 535-543 (1992)

MM2.PRM

Full MM2(1991) parameters including n-systems. The anomeric and electronegativity correction
terms included in some later versions of MM2 are not implemented.

N. L. Allinger, Conformational Analysis. 130. MM2. A Hydrocarbon Force Field Utilizing V1 and V2
Torsional Terms, J. Am. Chem. Soc., 99, 8127-8134 (1977)

J. T. Sprague, J. C. Tai, Y. Yuh and N. L. Allinger, The MMP2 Calculational Method, J. Comput. Chem., 8,
581-603 (1987)

J. C. Tai and N. L. Allinger, Molecular Mechanics Calculations on Conjugated Nitrogen-Containing
Heterocycles, J. Am. Chem. Soc., 110, 2050-2055 (1988)

J. C. Tai, J.-H. Lii and N. L. Allinger, A Molecular Mechanics (MM2) Study of Furan, Thiophene, and
Related Compounds, J. Comput. Chem., 10, 635-647 (1989)

N. L. Allinger, R. A. Kok and M. R. Imam, Hydrogen Bonding in MM2, J. Comput. Chem., 9, 591-595
(1988)

L. Norskov-Lauritsen and N. L. Allinger, A Molecular Mechanics Treatment of the Anomeric Effect, J.
Comput. Chem., 5, 326-335 (1984)

All parameters distributed with TINKER are from the "MM2 (1991) Parameter Set", as provided by
N. L. Allinger, University of Georgia

64 TINKER User's Guide 64

MM3.PRM

Full MM3(2000) parameters including pi-systems. The directional hydrogen bonding term and
electronegativity bond length corrections are implemented, but the anomeric and Bohlmann
correction terms are not implemented.

N. L. Allinger, Y. H. Yuh and J.-H. Lii, Molecular Mechanics. The MM3 Force Field for Hydrocarbons. 1,
J. Am. Chem. Soc., 111, 8551-8566 (1989)

J.-H. Lii and N. L. Allinger, Molecular Mechanics. The MM3 Force Field for Hydrocarbons. 2.
Vibrational Frequencies and Thermodynamics, J. Am. Chem. Soc., 111, 8566-8575 (1989)

J.-H. Lii and N. L. Allinger, Molecular Mechanics. The MM3 Force Field for Hydrocarbons. 3. The van
der Waals' Potentials and Crystal Data for Aliphatic and Aromatic Hydrocarbons, J. Am. Chem. Soc.,
111, 8576-8582 (1989)

N. L. Allinger, H.]. Geise, W. Pyckhout, L. A. Paquette and J. C. Gallucci, Structures of Norbornane and
Dodecahedrane by Molecular Mechanics Calculations (MM3), X-ray Crystallography, and Electron
Diffraction, J. Am. Chem. Soc., 111, 1106-1114 (1989) [stretch-torsion cross term]

N. L. Allinger, F. Li and L. Yan, Molecular Mechanics. The MM3 Force Field for Alkenes, J. Comput.
Chem., 11, 848-867 (1990)

N. L. Allinger, F. Li, L. Yan and]. C. Tai, Molecular Mechanics (MM3) Calculations on Conjugated
Hydrocarbons, J. Comput. Chem., 11, 868-895 (1990)

J.-H. Lii and N. L. Allinger, Directional Hydrogen Bonding in the MM3 Force Field. I, J. Phys. Org.
Chem., 7, 591-609 (1994)

J.-H. Lii and N. L. Allinger, Directional Hydrogen Bonding in the MM3 Force Field. 11, J. Comput. Chem.,
19,1001-1016 (1998)

All parameters distributed with TINKER are from the "MM3 (2000) Parameter Set", as provided by
N. L. Allinger, University of Georgia, August 2000

MM3PRO.PRM
Protein-only version of the MM3 parameters.

J.-H. Lii and N. L. Allinger, The MM3 Force Field for Amides, Polypeptides and Proteins, J. Comput.
Chem., 12,186-199 (1991)

OPLSUA.PRM

Complete OPLS-UA with united-atom parameters for proteins and many classes of organic molecules.
Explicit hydrogens on polar atoms and aromatic carbons.

W. L. Jorgensen and]. Tirado-Rives, The OPLS Potential Functions for Proteins. Energy Minimizations
for Crystals of Cyclic Peptides and Crambin, J. Am. Chem. Soc., 110, 1657-1666 (1988) [peptide and
proteins]

65 TINKER User's Guide 65

W. L. Jorgensen and D. L. Severance, Aromatic-Aromatic Interactions: Free Energy Profiles for the
Benzene Dimer in Water, Chloroform, and Liquid Benzene, J. Am. Chem. Soc., 112, 4768-4774 (1990)
[aromatic hydrogens]

S.]. Weiner, P. A. Kollman, D. A. Case, U. C. Singh, C. Ghio, G. Alagona, S. Profeta, Jr. and P. Weiner, A
New Force Field for Molecular Mechanical Simulation of Nucleic Acids and Proteins, J. Am. Chem.
Soc., 106, 765-784 (1984) [united-atom “AMBER/OPLS" local geometry]

S.]. Weiner, P. A. Kollman, D. T. Nguyen and D. A. Case, An All Atom Force Field for Simulations of
Proteins and Nucleic Acids, J. Comput. Chem., 7, 230-252 (1986) [all-atom "AMBER/OPLS" local
geometry]

L. X. Dang and B. M. Pettitt, Simple Intramolecular Model Potentials for Water, J. Phys. Chem., 91,
3349-3354 (1987) [flexible TIP3P and SPC water]

W. L. Jorgensen,]. D. Madura and C. J. Swenson, Optimized Intermolecular Potential Functions for
Liquid Hydrocarbons, J. Am. Chem. Soc., 106, 6638-6646 (1984) [hydrocarbons]

W. L. Jorgensen, E. R. Laird, T. B. Nguyen and]. Tirado-Rives, Monte Carlo Simulations of Pure Liquid
Substituted Benzenes with OPLS Potential Functions, J. Comput. Chem., 14, 206-215 (1993)
[substituted benzenes]

E. M. Duffy, P.]J. Kowalczyk and W. L. Jorgensen, Do Denaturants Interact with Aromatic
Hydrocarbons in Water?, J. Am. Chem. Soc., 115, 9271-9275 (1993) [benzene, naphthalene, urea,
guanidinium, tetramethyl ammonium]

W. L. Jorgensen and C. J. Swenson, Optimized Intermolecular Potential Functions for Amides and
Peptides. Structure and Properties of Liquid Amides, J. Am. Chem. Soc., 106, 765-784 (1984)
[amides]

W. L. Jorgensen, J. M. Briggs and M. L. Contreras, Relative Partition Coefficients for Organic Solutes
form Fluid Simulations, J. Phys. Chem., 94, 1683-1686 (1990) [chloroform, pyridine, pyrazine,
pyrimidine]

J. M. Briggs, T. B. Nguyen and W. L. Jorgensen, Monte Carlo Simulations of Liquid Acetic Acid and
Methyl Acetate with the OPLS Potential Functions, J. Phys. Chem., 95, 3315-3322 (1991) [acetic acid,
methyl acetate]

H. Liu, F. Muller-Plathe and W. F. van Gunsteren, A Force Field for Liquid Dimethyl Sulfoxide and
Physical Properties of Liquid Dimethyl Sulfoxide Calculated Using Molecular Dynamics Simulation, J.
Am. Chem. Soc., 117,4363-4366 (1995) [dimethyl sulfoxide]

J. Gao, X. Xia and T. F. George, Importance of Bimolecular Interactions in Developing Empirical
Potential Functions for Liquid Ammonia, J. Phys. Chem., 97,9241-9246 (1993) [ammonia]

J. Aqvist, lon-Water Interaction Potentials Derived from Free Energy Perturbation Simulations, J.
Phys. Chem., 94, 8021-8024 (1990) [metal ions]

W. S. Ross and C. C. Hardin, Ion-Induced Stabilization of the G-DNA Quadruplex: Free Energy
Perturbation Studies, J. Am. Chem. Soc., 116, 4363-4366 (1994) [alkali metal ions]

J. Chandrasekhar, D. C. Spellmeyer and W. L. Jorgensen, Energy Component Analysis for Dilute
Aqueous Solutions of Li+, Na+, F-, and CI- lons, J. Am. Chem. Soc., 106,903-910 (1984) [halide ions]

66 TINKER User's Guide 66

Most parameters distributed with TINKER are from “OPLS and OPLS-AA Parameters for Organic
Molecules, lons, and Nucleic Acids" as provided by W. L. Jorgensen, Yale University, October 1997

OPLSAA.PRM

OPLS-AA force field with all-atom parameters for proteins and many general classes of organic
molecules.

W. L. Jorgensen, D. S. Maxwell and]. Tirado-Rives, Development and Testing of the OPLS All-Atom
Force Field on Conformational Energetics and Properties of Organic Liquids, J. Am. Chem. Soc., 117,
11225-11236 (1996)

D. S. Maxwell,]. Tirado-Rives and W. L. Jorgensen, A Comprehensive Study of the Rotational Energy
Profiles of Organic Systems by Ab Initio MO Theory, Forming a Basis for Peptide Torsional
Parameters, J. Comput. Chem., 16,984-1010 (1995)

W. L. Jorgensen and N. A. McDonald, Development of an All-Atom Force Field for Heterocycles.
Properties of Liquid Pyridine and Diazenes, THEOCHEM-]. Mol. Struct., 424, 145-155 (1998)

N. A. McDonald and W. L. Jorgensen, Development of an All-Atom Force Field for Heterocycles.
Properties of Liquid Pyrrole, Furan, Diazoles, and Oxazoles, J. Phys. Chem. B, 102, 8049-8059 (1998)

R. C. Rizzo and W. L. Jorgensen, OPLS All-Atom Model for Amines: Resolution of the Amine Hydration
Problem, J. Am. Chem. Soc., 121, 4827-4836 (1999)

M. L. P. Price, D. Ostrovsky and W. L. Jorgensen, Gas-Phase and Liquid-State Properties of Esters,
Nitriles, and Nitro Compounds with the OPLS-AA Force Field, J. Comput. Chem., 22, 1340-1352
(2001)

All parameters distributed with TINKER are from “OPLS and OPLS-AA Parameters for Organic
Molecules, lons, and Nucleic Acids" as provided by W. L. Jorgensen, Yale University, October 1997

OPLSAAL.PRM

An improved OPLS-AA parameter set for proteins in which the only change is a reworking of many of
the backbone and sidechain torsional parameters to give better agreement with LMP2 QM
calculations. This parameter set is also known as OPLS(2000).

G. A. Kaminsky, R. A. Friesner,]. Tirado-Rives and W. L. Jorgensen, Evaluation and Reparametrization

of the OPLS-AA Force Field for Proteins via Comparison with Accurate Quantum Chemical
Calculations on Peptides, J. Phys. Chem. B, 105, 6474-6487 (2001)

SMOOTH.PRM

Version of OPLS-UA for use with potential smoothing. Largely adapted largely from standard OPLS-
UA parameters with modifications to the vdw and improper torsion terms.

R. V. Pappu, R. K. Hart and]. W. Ponder, Analysis and Application of Potential Energy Smoothing and

Search Methods for Global Optimization, J. Phys, Chem. B, 102, 9725-9742 (1998) [smoothing
modifications]

SMOOTHAA.PRM

67 TINKER User's Guide 67

Version of OPLS-AA for use with potential smoothing. Largely adapted largely from standard OPLS-
AA parameters with modifications to the vdw and improper torsion terms.

R. V. Pappu, R. K. Hart and]. W. Ponder, Analysis and Application of Potential Energy Smoothing and
Search Methods for Global Optimization, J. Phys, Chem. B, 102, 9725-9742 (1998) [smoothing
modifications]

WATER.PRM

The AMOEBA water parameters for a polarizable atomic multipole electrostatics model. This model
is equal or better to the best available water models for many bulk and cluster properties.

P. Ren and]. W. Ponder, A Polarizable Atomic Multipole Water Model for Molecular Mechanics
Simulation, J. Phys. Chem. B, 107, 5933-5947 (2003)

P. Ren and]. W. Ponder, Ion Solvation Thermodynamics from Simulation with a Polarizable Force
Field, A. Grossfield, J. Am. Chem. Soc., 125, 15671-15682 (2003)

P. Ren and]. W. Ponder, Temperature and Pressure Dependence of the AMOEBA Water Model, J.
Phys. Chem. B, 108, xxxx-xxxx (2004)

An earlier version the AMOEBA water model is described in: Yong Kong, Multipole Electrostatic
Methods for Protein Modeling with Reaction Field Treatment, Biochemistry & Molecular Biophysics,
Washington University, St. Louis, August, 1997 [available from http://dasher.wustl.edu/ponder/]

68 TINKER User's Guide 68

9. Descriptions of TINKER Routines

The distribution version of the TINKER package contains over 700 separate programs, subroutines
and functions. This section contains a brief description of the purpose of most of these code units.
Further information can be found in the comments located at the top of each source code file.

ACTIVE Subroutine
"active" sets the list of atoms that are used during each potential energy function calculation
ADDBASE Subroutine

"addbase" builds the Cartesian coordinates for a single nucleic acid base; coordinates are read from
the Protein Data Bank file or found from internal coordinates, then atom types are assigned and
connectivity data generated

ADDBOND Subroutine

"addbond" adds entries to the attached atoms list in order to generate a direct connection between
two atoms

ADDSIDE Subroutine

"addside" builds the Cartesian coordinates for a single amino acid side chain; coordinates are read
from the Protein Data Bank file or found from internal coordinates, then atom types are assigned and
connectivity data generated

ADJACENT Function

"adjacent" finds an atom connected to atom "i1" other than atom "i2"; if no such atom exists, then the
closest atom in space is returned

ALCHEMY Program

"alchemy" computes the free energy difference corresponding to a small perturbation by Boltzmann
weighting the potential energy difference over a number of sample states; current version
(incorrectly) considers the charge energy to be intermolecular in finding the perturbation energies

ANALYSIS Subroutine

"analysis" calls the series of routines needed to calculate the potential energy and perform energy
partitioning analysis in terms of type of interaction or atom number

ANALYZ4 Subroutine

"analyz4" prints the energy to 4 decimal places and number of interactions for each component of
the potential energy

ANALYZ6 Subroutine

69 TINKER User's Guide 69

"analyz6" prints the energy to 6 decimal places and number of interactions for each component of
the potential energy

ANALYZ8 Subroutine

"analyz8" prints the energy to 8 decimal places and number of interactions for each component of
the potential energy

ANALYZE Program

"analyze" computes and displays the total potential; options are provided to partition the energy by
atom or by potential function type; parameters used in computing interactions can also be displayed
by atom; output of large energy interactions and of electrostatic and inertial properties is available

ANGLES Subroutine

"angles” finds the total number of bond angles and stores the atom numbers of the atoms defining
each angle; for each angle to a trivalent central atom, the third bonded atom is stored for use in out-
of-plane bending

ANNEAL Program

"anneal" performs a simulated annealing protocol by means of variable temperature molecular
dynamics using either linear, exponential or sigmoidal cooling schedules

ANORM Function

"anorm" finds the norm (length) of a vector; used as a service routine by the Connolly surface area
and volume computation

ARCHIVE Program

"archive" is a utility program for coordinate files which concatenates multiple coordinate sets into a
single archive file, or extracts individual coordinate sets from an archive

ASET Subroutine

"aset" computes by recursion the A functions used in the evaluation of Slater-type (STO) overlap
integrals

ATOMYZE Subroutine
"atomyze" prints the potential energy components broken down by atom and to a choice of precision
ATTACH Subroutine

"attach” generates lists of 1-3, 1-4 and 1-5 connectivities starting from the previously determined list
of attached atoms (ie, 1-2 connectivity)

70 TINKER User's Guide 70

BASEFILE Subroutine

"basefile" extracts from an input filename the portion consisting of any directory name and the base
filename

BCUCOF Subroutine

"bcucof” determines the coefficient matrix needed for bicubic interpolation of a function, gradients
and cross derivatives

BCUINT Subroutine
"bcuint” performs a bicubic interpolation of the function value on a 2D spline grid
BCUINT1 Subroutine

"bcuint1" performs a bicubic interpolation of the function value and gradient along the directions of a
2D spline grid

BCUINT2 Subroutine

"bcuint2" performs a bicubic interpolation of the function value, gradient and Hessain along the
directions of a 2D spline grid

BEEMAN Subroutine

"beeman" performs a single molecular dynamics time step by means of a Beeman multistep recursion
formula; the actual coefficients are Brooks' "Better Beeman" values

BETACF Function

"betacf" computes a rapidly convergent continued fraction needed by routine "betai" to evaluate the
cumulative Beta distribution

BETAI Function

"betai" evaluates the cumulative Beta distribution function as the probability that a random variable

from a distribution with Beta parameters "a" and "b" will be less than "x
BIGBLOCK Subroutine

"bigblock" replicates the coordinates of a single unit cell to give a larger block of repeated units
BITORS Subroutine

"bitors" finds the total number of bitorsions, pairs of overlapping dihedral angles, and the numbers of
the five atoms defining each bitorsion

BMAX Function

71 TINKER User's Guide 71

"bmax" computes the maximum order of the B functions needed for evaluation of Slater-type (STO)
overlap integrals

BNDERR Function

"bnderr" is the distance bound error function and derivatives; this version implements the original
and Havel's normalized lower bound penalty, the normalized version is preferred when lower
bounds are small (as with NMR NOE restraints), the original penalty is needed if large lower bounds
are present

BONDS Subroutine

"bonds" finds the total number of covalent bonds and stores the atom numbers of the atoms defining
each bond

BORN Subroutine
"born" computes the Born radius of each atom for use with the various GB/SA solvation models
BORN1 Subroutine

"born1" computes derivatives of the Born radii with respect to atomic coordinates and increments
total energy derivatives and virial components for potentials involving Born radii

BOUNDS Subroutine

"bounds" finds the center of mass of each molecule and translates any stray molecules back into the
periodic box

BSET Subroutine

"bset” computes by downward recursion the B functions used in the evaluation of Slater-type (STO)
overlap integrals

BSPLINE Subroutine
"bspline” calculates the coefficients for an n-th order B-spline approximation
BSPLINE1 Subroutine

"bsplinel"” calculates the coefficients and derivative coefficients for an n-th order B-spline
approximation

BSSTEP Subroutine

"bsstep" takes a single Bulirsch-Stoer step with monitoring of local truncation error to ensure
accuracy

CALENDAR Subroutine

72 TINKER User's Guide 72

"calendar” returns the current time as a set of integer values representing the year, month, day, hour,
minute and second

CELLATOM Subroutine

"cellatom" completes the addition of a symmetry related atom to a unit cell by updating the atom
type and attachment arrays

CENTER Subroutine

"center” moves the weighted centroid of each coordinate set to the origin during least squares
superposition

CERROR Subroutine

"cerror" is the error handling routine for the Connolly surface area and volume computation
CFFTB Subroutine

"cfftb" computes the backward complex discrete Fourier transform, the Fourier synthesis
CFFTB1 Subroutine

CFFTF Subroutine

"cfftf" computes the forward complex discrete Fourier transform, the Fourier analysis
CFFTF1 Subroutine

CFFTI Subroutine

"cffti" initializes the array "wsave" which is used in both forward and backward transforms; the
prime factorization of "n" together with a tabulation of the trigonometric functions are computed and
stored in "wsave"

CFFTI1 Subroutine

CHIRER Function

"chirer" computes the chirality error and its derivatives with respect to atomic Cartesian coordinates
as a sum the squares of deviations of chiral volumes from target values

CHKCLASH Subroutine

"chkclash" determines if there are any atom clashes which might cause trouble on subsequent energy
evaluation

CHKPOLE Subroutine

73 TINKER User's Guide 73

"chkpole" inverts atomic multipole moments as necessary at sites with chiral local reference frame
definitions

CHKRING Subroutine

"chkring" tests angles to be constrained for their presence in small rings and removes constraints
that are redundant

CHKSIZE Subroutine

"chksize" computes a measure of overall global structural expansion or compaction from the number
of excess upper or lower bounds matrix violations

CHKTREE Subroutine

"chktree" tests a minimum energy structure to see if it belongs to the correct progenitor in the
existing map

CHKXYZ Subroutine
"chkxyz" finds any pairs of atoms with identical Cartesian coordinates, and prints a warning message
CHOLESKY Subroutine

"cholesky" uses a modified Cholesky method to solve the linear system Ax = b, returning "x" in "b";
"A" is assumed to be a real symmetric positive definite matrix with its diagonal and upper triangle
stored by rows

CIRPLN Subroutine

CJKM Function

"cjkm" computes the coefficients of spherical harmonics expressed in prolate spheroidal coordinates
CLIMBER Subroutine

CLIMBRGD Subroutine

CLIMBROT Subroutine

CLIMBTOR Subroutine

CLIMBXYZ Subroutine

CLOCK Subroutine

"clock" determines elapsed CPU time in seconds since the start of the job

74 TINKER User's Guide 74

CLUSTER Subroutine

"cluster” gets the partitioning of the system into groups and stores a list of the group to which each
atom belongs

COLUMN Subroutine

"column" takes the off-diagonal Hessian elements stored as sparse rows and sets up indices to allow
column access

COMMAND Subroutine

"command" uses the standard Unix-like iargc/getarg routines to get the number and values of
arguments specified on the command line at program runtime

COMPRESS Subroutine

"compress" transfers only the non-buried tori from the temporary tori arrays to the final tori arrays
CONNECT Subroutine

"connect” sets up the attached atom arrays starting from a set of internal coordinates

CONNOLLY Subroutine

"connolly” uses the algorithms from the AMS/VAM programs of Michael Connolly to compute the
analytical molecular surface area and volume of a collection of spherical atoms; thus it implements
Fred Richards' molecular surface definition as a set of analytically defined spherical and toroidal
polygons

CONTACT Subroutine
"contact” constructs the contact surface, cycles and convex faces
CONTROL Subroutine

"control" gets initial values for parameters that determine the output style and information level
provided by TINKER

COORDS Subroutine

"coords" converts the three principal eigenvalues/vectors from the metric matrix into atomic
coordinates, and calls a routine to compute the rms deviation from the bounds

CORRELATE Program

"correlate” computes the time correlation function of some user-supplied property from individual
snapshot frames taken from a molecular dynamics or other trajectory

CREATEJVM Subroutine

75 TINKER User's Guide 75

CREATESERVER Subroutine
CREATESYSTEM Subroutine
CREATEUPDATE Subroutine
CRYSTAL Program

"crystal" is a utility program which converts between fractional and Cartesian coordinates, and can
generate full unit cells from asymmetric units

CUTOFFS Subroutine

"cutoffs" initializes and stores spherical energy cutoff distance windows, Hessian element and Ewald
sum cutoffs, and the pairwise neighbor generation method

CYTSY Subroutine

"cytsy" solves a system of linear equations for a cyclically tridiagonal, symmetric, positive definite
matrix

CYTSYP Subroutine

"cytsyp" finds the Cholesky factors of a cyclically tridiagonal symmetric, positive definite matrix
given by two vectors

CYTSYS Subroutine

"cytsys" solves a cyclically tridiagonal linear system given the Cholesky factors

D1D2 Function

"d1d2" is a utility function used in computation of the reaction field recursive summation elements
DELETE Subroutine

"delete" removes a specified atom from the Cartesian coordinates list and shifts the remaining atoms
DEPTH Function

DESTROYJVM Subroutine

DESTROYSERVER Subroutine

DFTMOD Subroutine

"dftmod" computes the modulus of the discrete Fourier transform of "bsarray”, storing it into
"bsmod"

76 TINKER User's Guide 76

DIAGQ Subroutine

"diagq" is a matrix diagonalization routine which is derived from the classical given, housec, and
eigen algorithms with several modifications to increase the efficiency and accuracy

DIFFEQ Subroutine

"diffeq" performs the numerical integration of an ordinary differential equation using an adaptive
stepsize method to solve the corresponding coupled first-order equations of the general form dyi/dx
= f(x,y1,.,yn) foryi =y1,..,yn

DIFFUSE Program

"diffuse” finds the self-diffusion constant for a homogeneous liquid via the Einstein relation from a
set of stored molecular dynamics frames; molecular centers of mass are unfolded and mean squared
displacements are computed versus time separation

DIST2 Function

"dist2" finds the distance squared between two points; used as a service routine by the Connolly
surface area and volume computation

DISTGEOM Program

"distgeom" uses a metric matrix distance geometry procedure to generate structures with interpoint
distances that lie within specified bounds, with chiral centers that maintain chirality, and with
torsional angles restrained to desired values; the user also has the ability to interactively inspect and
alter the triangle smoothed bounds matrix prior to embedding

DMDUMP Subroutine

"dmdump"” puts the distance matrix of the final structure into the upper half of a matrix, the distance
of each atom to the centroid on the diagonal, and the individual terms of the bounds errors into the
lower half of the matrix

DOCUMENT Program

"document" generates a formatted description of all the code modules or common blocks, an index of
routines called by each source code module, a listing of all valid keywords, a list of include file
dependencies as needed by a Unix-style Makefile, or a formatted force field parameter set summary

DOT Function
"dot" finds the dot product of two vectors

DSTMAT Subroutine

77 TINKER User's Guide 77

"dstmat" selects a distance matrix containing values between the previously smoothed upper and
lower bounds; the distance values are chosen from uniform distributions, in a triangle correlated
fashion, or using random partial metrization

DYNAMIC Program

"dynamic" computes a molecular dynamics trajectory in any of several statistical mechanical
ensembles with optional periodic boundaries and optional coupling to temperature and pressure
baths alternatively a stochastic dynamics trajectory can be generated

EANGANG Subroutine
"eangang" calculates the angle-angle potential energy
EANGANG1 Subroutine

"eangang1" calculates the angle-angle potential energy and first derivatives with respect to Cartesian
coordinates

EANGANG?2 Subroutine

"eangang2" calculates the angle-angle potential energy second derivatives with respect to Cartesian
coordinates using finite difference methods

EANGANG2A Subroutine

"eangang2a" calculates the angle-angle first derivatives for a single interaction with respect to
Cartesian coordinates; used in computation of finite difference second derivatives

EANGANG3 Subroutine
"eangang3" calculates the angle-angle potential energy; also partitions the energy among the atoms
EANGLE Subroutine

"eangle" calculates the angle bending potential energy; projected in-plane angles at trigonal centers
or Fourier angle bending terms are optionally used

EANGLE1 Subroutine

"eanglel" calculates the angle bending potential energy and the first derivatives with respect to
Cartesian coordinates; projected in-plane angles at trigonal centers or Fourier angle bending terms
are optionally used

EANGLE2 Subroutine
"eangle2" calculates second derivatives of the angle bending energy for a single atom using a mixture

of analytical and finite difference methods; projected in-plane angles at trigonal centers or Fourier
angle bending terms are optionally used

78 TINKER User's Guide 78

EANGLE2A Subroutine

"eangle2a" calculates bond angle bending potential energy second derivatives with respect to
Cartesian coordinates

EANGLE2B Subroutine

"eangleZ2b" computes projected in-plane bending first derivatives for a single angle with respect to
Cartesian coordinates; used in computation of finite difference second derivatives

EANGLE3 Subroutine

"eangle3" calculates the angle bending potential energy, also partitions the energy among the atoms;
projected in-plane angles at trigonal centers or Fourier angle bending terms are optionally used

EBOND Subroutine
"ebond" calculates the bond stretching energy
EBOND1 Subroutine

"ebond1" calculates the bond stretching energy and first derivatives with respect to Cartesian
coordinates

EBOND2 Subroutine

"ebond2" calculates second derivatives of the bond stretching energy for a single atom at a time
EBOND3 Subroutine

"ebond3" calculates the bond stretching energy; also partitions the energy among the atoms
EBUCK Subroutine

"ebuck” calculates the Buckingham exp-6 van der Waals energy

EBUCKOA Subroutine

"ebuck0a" calculates the Buckingham exp-6 van der Waals energy using a pairwise double loop
EBUCKOB Subroutine

"ebuckOb" calculates the Buckingham exp-6 van der Waals energy using the method of lights to
locate neighboring atoms

EBUCKOC Subroutine

"ebuckOc" calculates the Buckingham exp-6 van der Waals energy via a Gaussian approximation for
potential energy smoothing

79 TINKER User's Guide 79

EBUCK1 Subroutine

"ebuck1" calculates the Buckingham exp-6 van der Waals energy and its first derivatives with respect
to Cartesian coordinates

EBUCK1A Subroutine

"ebuckla" calculates the Buckingham exp-6 van der Waals energy and its first derivatives using a
pairwise double loop

EBUCK1B Subroutine

"ebuck1b" calculates the Buckingham exp-6 van der Waals energy and its first derivatives using the
method of lights to locate neighboring atoms

EBUCK1C Subroutine

"ebucklc" calculates the Buckingham exp-6 van der Waals energy and its first derivatives via a
Gaussian approximation for potential energy smoothing

EBUCK2 Subroutine

"ebuck2" calculates the Buckingham exp-6 van der Waals second derivatives for a single atom at a
time

EBUCK2A Subroutine

"ebuck2a" calculates the Buckingham exp-6 van der Waals second derivatives using a double loop
over relevant atom pairs

EBUCK2B Subroutine

"ebuck2b" calculates the Buckingham exp-6 van der Waals second derivatives via a Gaussian
approximation for use with potential energy smoothing

EBUCK3 Subroutine

"ebuck3" calculates the Buckingham exp-6 van der Waals energy and partitions the energy among
the atoms

EBUCK3A Subroutine

"ebuck3a" calculates the Buckingham exp-6 van der Waals energy and partitions the energy among
the atoms using a pairwise double loop

EBUCK3B Subroutine

"ebuck3b" calculates the Buckingham exp-6 van der Waals energy and also partitions the energy
among the atoms using the method of lights to locate neighboring atoms

80 TINKER User's Guide 80

EBUCK3C Subroutine

"ebuck3c" calculates the Buckingham exp-6 van der Waals energy via a Gaussian approximation for
potential energy smoothing

ECHARGE Subroutine

"echarge" calculates the charge-charge interaction energy

ECHARGEOA Subroutine

"echarge0a" calculates the charge-charge interaction energy using a pairwise double loop
ECHARGEOB Subroutine

"echargeOb" calculates the charge-charge interaction energy using the method of lights to locate
neighboring atoms

ECHARGEOC Subroutine

"echargeOc" calculates the charge-charge interaction energy for use with potential smoothing
methods

ECHARGEOD Subroutine
"echarge0d" calculates the charge-charge interaction energy using a particle mesh Ewald summation
ECHARGEOE Subroutine

"echargeOe" calculates the charge-charge interaction energy using a particle mesh Ewald summation
and the method of lights to locate neighboring atoms

ECHARGE1 Subroutine

"echargel" calculates the charge-charge interaction energy and first derivatives with respect to
Cartesian coordinates

ECHARGE1A Subroutine

"echargela" calculates the charge-charge interaction energy and first derivatives with respect to
Cartesian coordinates using a pairwise double loop

ECHARGE1B Subroutine

"echargelb" calculates the charge-charge interaction energy and first derivatives with respect to
Cartesian coordinates using the method of lights to locate neighboring atoms

ECHARGE1C Subroutine

81 TINKER User's Guide 81

"echargelc" calculates the charge-charge interaction energy and first derivatives with respect to
Cartesian coordinates for use with potential smoothing methods

ECHARGE1D Subroutine

"echargeld" calculates the charge-charge interaction energy and first derivatives with respect to
Cartesian coordinates using a particle mesh Ewald summation

ECHARGE?2 Subroutine
"echarge2" calculates second derivatives of the charge-charge interaction energy for a single atom
ECHARGE2A Subroutine

"echarge2a" calculates second derivatives of the charge-charge interaction energy for a single atom
using a pairwise double loop

ECHARGE2B Subroutine

"echarge2b" calculates second derivatives of the charge-charge interaction energy for a single atom
for use with potential smoothing methods

ECHARGE2C Subroutine

"echarge2c" calculates second derivatives of the charge-charge interaction energy for a single atom
using a particle mesh Ewald summation

ECHARGE3 Subroutine

"echarge3" calculates the charge-charge interaction energy and partitions the energy among the
atoms

ECHARGE3A Subroutine

"echarge3a" calculates the charge-charge interaction energy and partitions the energy among the
atoms using a pairwise double loop

ECHARGE3B Subroutine

"echarge3b" calculates the charge-charge interaction energy and partitions the energy among the
atoms using the method of lights to locate neighboring atoms

ECHARGE3C Subroutine

"echarge3c" calculates the charge-charge interaction energy and partitions the energy among the
atoms for use with potential smoothing methods

ECHARGE3D Subroutine

82 TINKER User's Guide 82

"echarge3d" calculates the charge-charge interaction energy and partitions the energy among the
atoms using a particle mesh Ewald summation

ECHARGE3E Subroutine

"echarge3e" calculates the charge-charge interaction energy and partitions the energy among the
atoms using a particle mesh Ewald summation and the method of lights to locate neighboring atoms

ECHGDPL Subroutine
"echgdpl” calculates the charge-dipole interaction energy
ECHGDPL1 Subroutine

"echgdpll" calculates the charge-dipole interaction energy and first derivatives with respect to
Cartesian coordinates

ECHGDPL2 Subroutine
"echgdpl2" calculates second derivatives of the charge-dipole interaction energy for a single atom
ECHGDPL3 Subroutine

"echgdpl3" calculates the charge-dipole interaction energy; also partitions the energy among the
atoms

EDIPOLE Subroutine
"edipole"” calculates the dipole-dipole interaction energy
EDIPOLE1 Subroutine

"edipolel" calculates the dipole-dipole interaction energy and first derivatives with respect to
Cartesian coordinates

EDIPOLE2 Subroutine
"edipole2" calculates second derivatives of the dipole-dipole interaction energy for a single atom
EDIPOLE3 Subroutine

"edipole3" calculates the dipole-dipole interaction energy; also partitions the energy among the
atoms

EGAUSS Subroutine

"egauss" calculates the Gaussian expansion van der Waals interaction energy

83 TINKER User's Guide 83

EGAUSSO0A Subroutine

"egauss0a" calculates the Gaussian expansion van der Waals interaction energy using a pairwise
double loop

EGAUSSOB Subroutine

"egaussOb" calculates the Gaussian expansion van der Waals interaction energy for use with potential
energy smoothing

EGAUSS1 Subroutine

"egauss1" calculates the Gaussian expansion van der Waals interaction energy and its first
derivatives with respect to Cartesian coordinates

EGAUSS1A Subroutine

"egaussla" calculates the Gaussian expansion van der Waals interaction energy and its first
derivatives using a pairwise double loop

EGAUSS1B Subroutine

"egauss1b" calculates the Gaussian expansion van der Waals interaction energy and its first
derivatives for use with stophat potential energy smoothing

EGAUSS2 Subroutine

"egauss2" calculates the Gaussian expansion van der Waals second derivatives for a single atom at a
time

EGAUSS2A Subroutine

"egauss2a" calculates the Gaussian expansion van der Waals second derivatives using a pairwise
double loop

EGAUSS2B Subroutine

"egauss2b" calculates the Gaussian expansion van der Waals second derivatives for stophat potential
energy smoothing

EGAUSS3 Subroutine

"egauss3" calculates the Gaussian expansion van der Waals interaction energy and partitions the
energy among the atoms

EGAUSS3A Subroutine

"egauss3a" calculates the Gaussian expansion van der Waals interaction energy and partitions the
energy among the atoms using a pairwise double loop

84 TINKER User's Guide 84

EGAUSS3B Subroutine

"egauss3b" calculates the Gaussian expansion van der Waals interaction energy and partitions the
energy among the atoms using a pairwise double loop

EGBSAOA Subroutine
"egbsa0a" calculates the generalized Born polarization energy for the GB/SA solvation models
EGBSAOB Subroutine

"egbsaOb" calculates the generalized Born polarization energy for the GB/SA solvation models for
use with potential smoothing methods via analogy to the smoothing of Coulomb's law

EGBSA1A Subroutine
"egbsala" calculates the generalized Born energy and first derivatives of the GB/SA solvation models
EGBSA1B Subroutine

"egbsalb" calculates the generalized Born energy and first derivatives of the GB/SA solvation models
for use with potential smoothing methods

EGBSA2A Subroutine

"egbsa2a" calculates second derivatives of the generalized Born energy term for the GB/SA solvation
models

EGBSA2B Subroutine

"egbsa2b" calculates second derivatives of the generalized Born energy term for the GB/SA solvation
models for use with potential smoothing methods

EGBSA3A Subroutine

"egbsa3a" calculates the generalized Born energy term for the GB/SA solvation models; also
partitions the energy among the atoms

EGBSA3B Subroutine

"egbsa3b" calculates the generalized Born polarization energy for the GB/SA solvation models for
use with potential smoothing methods via analogy to the smoothing of Coulomb's law; also partitions
the energy among the atoms

EGEOM Subroutine

"egeom" calculates the energy due to restraints on positions, distances, angles and torsions as well as
Gaussian basin and spherical droplet restraints

EGEOM1 Subroutine

85 TINKER User's Guide 85

"egeom1" calculates the energy and first derivatives with respect to Cartesian coordinates due to
restraints on positions, distances, angles and torsions as well as Gaussian basin and spherical droplet
restraints

EGEOM2 Subroutine

"egeom?2" calculates second derivatives of restraints on positions, distances, angles and torsions as
well as Gaussian basin and spherical droplet restraints

EGEOMS3 Subroutine

"egeom3" calculates the energy due to restraints on positions, distances, angles and torsions as well
as Gaussian basin and droplet restraints; also partitions energy among the atoms

EHAL Subroutine

"ehal" calculates the buffered 14-7 van der Waals energy

EHALOA Subroutine

"ehal0a" calculates the buffered 14-7 van der Waals energy using a pairwise double loop
EHALOB Subroutine

"ehal0a" calculates the buffered 14-7 van der Waals energy using the method of lights to locate
neighboring atoms

EHAL1 Subroutine

"ehall" calculates the buffered 14-7 van der Waals energy and its first derivatives with respect to
Cartesian coordinates

EHAL1A Subroutine

"ehalla" calculates the buffered 14-7 van der Waals energy and its first derivatives with respect to
Cartesian coordinates using a pairwise double loop

EHAL1B Subroutine

"ehallb" calculates the buffered 14-7 van der Waals energy and its first derivatives with respect to
Cartesian coordinates using the method of lights to locate neighboring atoms

EHAL2 Subroutine
"ehal2" calculates the buffered 14-7 van der Waals second derivatives for a single atom at a time

EHAL3 Subroutine

86 TINKER User's Guide 86

"ehal3" calculates the buffered 14-7 van der Waals energy and partitions the energy among the
atoms

EHAL3A Subroutine

"ehal3a" calculates the buffered 14-7 van der Waals energy and partitions the energy among the
atoms using a pairwise double loop

EHAL3B Subroutine

"ehal3b" calculates the buffered 14-7 van der Waals energy and also partitions the energy among the
atoms using the method of lights to locate neighboring atoms

EIGEN Subroutine

"eigen" uses the power method to compute the largest eigenvalues and eigenvectors of the metric
matrix, "valid" is set true if the first three eigenvalues are positive

EIGENRGD Subroutine

EIGENROT Subroutine

EIGENROT Subroutine

EIGENTOR Subroutine

EIGENXYZ Subroutine

EIMPROP Subroutine

"eimprop" calculates the improper dihedral potential energy
EIMPROP1 Subroutine

"eimpropl1" calculates improper dihedral energy and its first derivatives with respect to Cartesian
coordinates

EIMPROP2 Subroutine
"eimprop2" calculates second derivatives of the improper dihedral angle energy for a single atom
EIMPROP3 Subroutine

"eimprop3" calculates the improper dihedral potential energy; also partitions the energy terms
among the atoms

EIMPTOR Subroutine

"eimptor" calculates the improper torsion potential energy

87 TINKER User's Guide 87

EIMPTOR1 Subroutine

"eimptorl" calculates improper torsion energy and its first derivatives with respect to Cartesian
coordinates

EIMPTOR2 Subroutine
"eimptor2" calculates second derivatives of the improper torsion energy for a single atom
EIMPTOR3 Subroutine

"eimptor3" calculates the improper torsion potential energy; also partitions the energy terms among
the atoms

EL] Subroutine

"elj" calculates the Lennard-Jones 6-12 van der Waals energy

ELJOA Subroutine

"elj0a" calculates the Lennard-Jones 6-12 van der Waals energy using a pairwise double loop
ELJOB Subroutine

"eljOb" calculates the Lennard-Jones 6-12 van der Waals energy using the method of lights to locate
neighboring atoms

ELJOC Subroutine

"eljOc" calculates the Lennard-Jones 6-12 van der Waals energy via a Gaussian approximation for
potential energy smoothing

ELJOD Subroutine

"eljod" calculates the Lennard-Jones 6-12 van der Waals energy for use with stophat potential energy
smoothing

EL]J1 Subroutine

"elj1" calculates the Lennard-Jones 6-12 van der Waals energy and its first derivatives with respect to
Cartesian coordinates

ELJ1A Subroutine

"eljla" calculates the Lennard-Jones 6-12 van der Waals energy and its first derivatives using a
pairwise double loop

ELJ1B Subroutine

88 TINKER User's Guide 88

"elj1b" calculates the Lennard-Jones 6-12 van der Waals energy and its first derivatives using the
method of lights to locate neighboring atoms

ELJ1C Subroutine

"elj1c" calculates the Lennard-Jones 6-12 van der Waals energy and its first derivatives via a
Gaussian approximation for potential energy smoothing

ELJ1D Subroutine

"elj1d" calculates the van der Waals interaction energy and its first derivatives for use with stophat
potential energy smoothing

EL]2 Subroutine
"elj2" calculates the Lennard-Jones 6-12 van der Waals second derivatives for a single atom at a time
ELJ2A Subroutine

"elj2a" calculates the Lennard-Jones 6-12 van der Waals second derivatives using a double loop over
relevant atom pairs

EL]J2B Subroutine

"elj2b" calculates the Lennard-Jones 6-12 van der Waals second derivatives via a Gaussian
approximation for use with potential energy smoothing

ELJ2C Subroutine

"elj2c" calculates the Lennard-Jones 6-12 van der Waals second derivatives for use with stophat
potential energy smoothing

EL]3 Subroutine

"elj3" calculates the Lennard-Jones 6-12 van der Waals energy and also partitions the energy among
the atoms

ELJ3A Subroutine

"elj3a" calculates the Lennard-Jones 6-12 van der Waals energy and also partitions the energy among
the atoms using a pairwise double loop

EL]J3B Subroutine

"elj3b" calculates the Lennard-]Jones 6-12 van der Waals energy and also partitions the energy among
the atoms using the method of lights to locate neighboring atoms

ELJ3C Subroutine

89 TINKER User's Guide 89

"elj3c" calculates the Lennard-Jones 6-12 van der Waals energy and also partitions the energy among
the atoms via a Gaussian approximation for potential energy smoothing

ELJ3D Subroutine

"elj3d" calculates the Lennard-]Jones 6-12 van der Waals energy and also partitions the energy among
the atoms for use with stophat potential energy smoothing

EMBED Subroutine

"embed" is a distance geometry routine patterned after the ideas of Gordon Crippen, Irwin Kuntz and
Tim Havel; it takes as input a set of upper and lower bounds on the interpoint distances, chirality
restraints and torsional restraints, and attempts to generate a set of coordinates that satisfy the input
bounds and restraints

EMETAL Subroutine
"emetal” calculates the transition metal ligand field energy
EMETAL1 Subroutine

"emetall" calculates the transition metal ligand field energy and its first derivatives with respect to
Cartesian coordinates

EMETALZ2 Subroutine
"emetal2" calculates the transition metal ligand field second derivatives for a single atom at a time
EMETAL3 Subroutine

"emetal3" calculates the transition metal ligand field energy and also partitions the energy among the
atoms

EMMB3HB Subroutine

"emm3hb" calculates the MM3 exp-6 van der Waals and directional charge transfer hydrogen
bonding energy

EMM3HBOA Subroutine

"emm3hb0a" calculates the MM3 exp-6 van der Waals and directional charge transfer hydrogen
bonding energy using a pairwise double loop

EMM3HBOB Subroutine

"emm3hb0Ob" calculates the MM3 exp-6 van der Waals and directional charge transfer hydrogen
bonding energy using the method of lights to locate neighboring atoms

EMM3HB1 Subroutine

90 TINKER User's Guide 90

"emm3hb1" calculates the MM3 exp-6 van der Waals and directional charge transfer hydrogen
bonding energy with respect to Cartesian coordinates

EMM3HB1A Subroutine

"emm3hbla" calculates the MM3 exp-6 van der Waals and directional charge transfer hydrogen
bonding energy with respect to Cartesian coordinates using a pairwise double loop

EMM3HB1B Subroutine

"emm3hb1b" calculates the MM3 exp-6 van der Waals and directional charge transfer hydrogen
bonding energy with respect to Cartesian coordinates using the method of lights to locate
neighboring atoms

EMM3HB2 Subroutine

"emm3hb2" calculates the MM3 exp-6 van der Waals and directional charge transfer hydrogen
bonding second derivatives for a single atom at a time

EMM3HB3 Subroutine

"emm3hb3" calculates the MM3 exp-6 van der Waals and directional charge transfer hydrogen
bonding energy, and partitions the energy among the atoms

EMM3HB3A Subroutine

"emm3hb3" calculates the MM3 exp-6 van der Waals and directional charge transfer hydrogen
bonding energy, and partitions the energy among the atoms

EMM3HB3B Subroutine

"emm3hb3b" calculates the MM3 exp-6 van der Waals and directional charge transfer hydrogen
bonding energy using the method of lights to locate neighboring atoms

EMPOLE Subroutine

"empole" calculates the electrostatic energy due to atomic multipole interactions and dipole
polarizability

EMPOLEOA Subroutine

"empole0a" calculates the electrostatic energy due to atomic multipole interactions and dipole
polarizability using a pairwise double loop

EMPOLEOB Subroutine

"empole0b" calculates the electrostatic energy due to atomic multipole interactions and dipole
polarizability using a regular Ewald summation

91 TINKER User's Guide 91

EMPOLE1 Subroutine

"empolel"” calculates the multipole and dipole polarization energy and derivatives with respect to
Cartesian coordinates

EMPOLE1A Subroutine

"empolela" calculates the multipole and dipole polarization energy and derivatives with respect to
Cartesian coordinates using a pairwise double loop

EMPOLE1B Subroutine

"empolelb" calculates the multipole and dipole polarization energy and derivatives with respect to
Cartesian coordinates using a regular Ewald summation

EMPOLE2 Subroutine

"empole2" calculates second derivatives of the multipole and dipole polarization energy for a single
atom ata time

EMPOLE2A Subroutine

"empole2a" computes multipole and dipole polarization first derivatives for a single atom with
respect to Cartesian coordinates; used to get finite difference second derivatives

EMPOLE3 Subroutine

"empole3" calculates the electrostatic energy due to atomic multipole interactions and dipole
polarizability, and partitions the energy among the atoms

EMPOLE3A Subroutine

"empole3a" calculates the electrostatic energy due to atomic multipole interactions and dipole
polarizability, and partitions the energy among the atoms using a double loop

EMPOLE3B Subroutine

"empole3b" calculates the electrostatic energy due to atomic multipole interactions and dipole
polarizability, and partitions the energy among the atoms using a regular Ewald summation

ENERGY Function

"energy" calls the subroutines to calculate the potential energy terms and sums up to form the total
energy

ENRGYZE Subroutine

"energyze" is an auxiliary routine for the analyze program that performs the energy analysis and
prints the total and intermolecular energies

92 TINKER User's Guide 92

EOPBEND Subroutine

"eopbend" computes the out-of-plane bend potential energy at trigonal centers via a Wilson-Decius-
Cross angle bend

EOPBEND1 Subroutine

"eopbend1" computes the out-of-plane bend potential energy and first derivatives at trigonal centers
via a Wilson-Decius-Cross angle bend

EOPBEND2 Subroutine

"eopbend2" calculates second derivatives of the out-of-plane bend energy via a Wilson-Decius-Cross
angle bend for a single atom using finite difference methods

EOPBEND2A Subroutine

"eopbend2a” calculates out-of-plane bending first derivatives at a trigonal center via a Wilson-
Decius-Cross angle bend; used in computation of finite difference second derivatives

EOPBEND3 Subroutine

"eopbend3" computes the out-of-plane bend potential energy at trigonal centers via a Wilson-Decius-
Cross angle bend; also partitions the energy among the atoms

EOPDIST Subroutine

"eopdist" computes the out-of-plane distance potential energy at trigonal centers via the central
atom height

EOPDIST1 Subroutine

"eopdistl" computes the out-of-plane distance potential energy and first derivatives at trigonal
centers via the central atom height

EOPDIST2 Subroutine

"eopdist2" calculates second derivatives of the out-of-plane distance energy for a single atom via the
central atom height

EOPDIST3 Subroutine

"eopdist3" computes the out-of-plane distance potential energy at trigonal centers via the central
atom height; also partitions the energy among the atoms

EPITORS Subroutine
"epitors” calculates the pi-orbital torsion potential energy

EPITORS1 Subroutine

93 TINKER User's Guide 93

"epitors1" calculates the pi-orbital torsion potential energy and first derivatives with respect to
Cartesian coordinates

EPITORS2 Subroutine

"epitors2" calculates the second derivatives of the pi-orbital torsion energy for a single atom using
finite difference methods

EPITORS2A Subroutine

"epitors2a" calculates the pi-orbital torsion first derivatives; used in computation of finite difference
second derivatives

EPITORS3 Subroutine

"epitors3" calculates the pi-orbital torsion potential energy; also partitions the energy terms among
the atoms

EPME Subroutine

"epme" computes the reciprocal space energy for a particle mesh Ewald summation over partial
charges

EPME1 Subroutine

"epmel” computes the reciprocal space energy and first derivatives for a particle mesh Ewald
summation

EPME3 Subroutine

"epme3" computes the reciprocal space energy for a particle mesh Ewald summation over partial
charges and prints information about the energy over the charge grid points

EPUCLC Subroutine
EREAL Subroutine

"ereal" evaluates the real space portion of the regular Ewald summation energy due to atomic
multipole interactions and dipole polarizability

EREAL1 Subroutine

"ereall" evaluates the real space portion of the regular Ewald summation energy and gradient due to
atomic multipole interactions and dipole polarizability

EREAL3 Subroutine

"ereal3" evaluates the real space portion of the regular Ewald summation energy due to atomic
multipole interactions and dipole polarizability and partitions the energy among the atoms

94 TINKER User's Guide 94

ERECIP Subroutine

"erecip" evaluates the reciprocal space portion of the regular Ewald summation energy due to atomic
multipole interactions and dipole polarizability

ERECIP1 Subroutine

"erecipl” evaluates the reciprocal space portion of the regular Ewald summation energy and
gradient due to atomic multipole interactions and dipole polarizability

ERECIP3 Subroutine

"erecip3" evaluates the reciprocal space portion of the regular Ewald summation energy due to
atomic multipole interactions and dipole polarizability, and prints information about the energy over
the reciprocal lattice vectors

ERF Function

"erf' computes a numerical approximation to the value of the error function via a Chebyshev
approximation

ERFC Function

"erfc" computes a numerical approximation to the value of the complementary error function via a
Chebyshev approximation

ERFCORE Subroutine

"erfcore" evaluates erf(x) or erfc(x) for a real argument x; when called with mode set to 0 it returns
erf, a mode of 1 returns erfc; uses rational functions that approximate erf(x) and erfc(x) to at least 18
significant decimal digits

ERFIK Subroutine
"erfik" compute the reaction field energy due to a single pair of atomic multipoles
ERFINV Function

"erfinv" evaluates the inverse of the error function erf for a real argument in the range (-1,1) using a
rational function approximation followed by cycles of Newton-Raphson correction

ERXNFLD Subroutine
"erxnfld" calculates the macroscopic reaction field energy arising from a set of atomic multipoles
ERXNFLD1 Subroutine

"erxnfld1" calculates the macroscopic reaction field energy and derivatives with respect to Cartesian
coordinates

95 TINKER User's Guide 95

ERXNFLD2 Subroutine

"erxnfld2" calculates second derivatives of the macroscopic reaction field energy for a single atom at
a time

ERXNFLD3 Subroutine

"erxnfld3" calculates the macroscopic reaction field energy, and also partitions the energy among the
atoms

ESOLYV Subroutine

"esolv" calculates the continuum solvation energy via either the Eisenberg-McLachlan ASP mode],
Ooi-Scheraga SASA model, various GB/SA methods or the ACE model

ESOLV1 Subroutine

"esolvl" calculates the continuum solvation energy and first derivatives with respect to Cartesian
coordinates using either the Eisenberg-McLachlan ASP, Ooi-Scheraga SASA or various GB/SA
solvation models

ESOLV2 Subroutine

"esolv2" calculates second derivatives of the continuum solvation energy using either the Eisenberg-
McLachlan ASP, Ooi-Scheraga SASA or various GB/SA solvation models

ESOLV3 Subroutine

"esolv3" calculates the continuum solvation energy using either the Eisenberg-McLachlan ASP model],
Ooi-Scheraga SASA model, various GB/SA methods or the ACE model; also partitions the energy
among the atoms

ESTRBND Subroutine
"estrbnd" calculates the stretch-bend potential energy
ESTRBND1 Subroutine

"estrbnd1" calculates the stretch-bend potential energy and first derivatives with respect to
Cartesian coordinates

ESTRBND2 Subroutine

"estrbnd2" calculates the stretch-bend potential energy second derivatives with respect to Cartesian
coordinates

ESTRBND3 Subroutine

"estrbnd3" calculates the stretch-bend potential energy; also partitions the energy among the atoms

96 TINKER User's Guide 96

ESTRTOR Subroutine
"estrtor" calculates the stretch-torsion potential energy
ESTRTOR1 Subroutine

"estrtorl" calculates the stretch-torsion energy and first derivatives with respect to Cartesian
coordinates

ESTRTOR2 Subroutine

"estrtor2" calculates the stretch-torsion potential energy second derivatives with respect to
Cartesian coordinates

ESTRTOR3 Subroutine

"estrtor3" calculates the stretch-torsion potential energy; also partitions the energy terms among the
atoms

ETORS Subroutine

"etors" calculates the torsional potential energy

ETORSOA Subroutine

"etors0a" calculates the torsional potential energy using a standard sum of Fourier terms

ETORSOB Subroutine

"etorsOb" calculates the torsional potential energy for use with potential energy smoothing methods
ETORS1 Subroutine

"etors1" calculates the torsional potential energy and first derivatives with respect to Cartesian
coordinates

ETORS1A Subroutine

"etorsla" calculates the torsional potential energy and first derivatives with respect to Cartesian
coordinates using a standard sum of Fourier terms

ETORS1B Subroutine

"etors1b" calculates the torsional potential energy and first derivatives with respect to Cartesian
coordinates for use with potential energy smoothing methods

ETORS2 Subroutine

97 TINKER User's Guide 97

"etors2" calculates the second derivatives of the torsional energy for a single atom
ETORS2A Subroutine

"etors2a" calculates the second derivatives of the torsional energy for a single atom using a standard
sum of Fourier terms

ETORS2B Subroutine

"etors2b" calculates the second derivatives of the torsional energy for a single atom for use with
potential energy smoothing methods

ETORS3 Subroutine
"etors3" calculates the torsional potential energy; also partitions the energy among the atoms
ETORS3A Subroutine

"etors3a" calculates the torsional potential energy using a standard sum of Fourier terms and
partitions the energy among the atoms

ETORS3B Subroutine

"etors3b" calculates the torsional potential energy for use with potential energy smoothing methods
and partitions the energy among the atoms

ETORTOR Subroutine
"etortor" calculates the torsion-torsion potential energy
ETORTOR1 Subroutine

"etortorl" calculates the torsion-torsion energy and first derivatives with respect to Cartesian
coordinates

ETORTOR2 Subroutine

"etortor2" calculates the torsion-torsion potential energy second derivatives with respect to
Cartesian coordinates

ETORTOR3 Subroutine

"etortor3" calculates the torsion-torsion potential energy; also partitions the energy terms among
the atoms

EUREY Subroutine

"eurey" calculates the Urey-Bradley 1-3 interaction energy

98 TINKER User's Guide 98

EUREY1 Subroutine

"eureyl" calculates the Urey-Bradley interaction energy and its first derivatives with respect to
Cartesian coordinates

EUREY2 Subroutine

"eurey2" calculates second derivatives of the Urey-Bradley interaction energy for a single atom at a
time

EUREY3 Subroutine
"eurey3" calculates the Urey-Bradley energy; also partitions the energy among the atoms
EWALDCOF Subroutine

"ewaldcof” f