USER S GUIDE

SIESTA 4.1-b3

July 04, 2017

http://www.uam.es/siesta

http://www.uam.es/siesta

Contributors to SIESTA

SIESTA is Copyright © 1996-2017 by The Siesta Group:

Emilio Artacho CIC-Nanogune and University of Cambridge

José Maria Cela Barcelona Supercomputing Center

Julian D. Gale Curtin University of Technology, Perth

Alberto Garcia

Javier Junquera Universidad de Cantabria, Santander

Richard M. Martin University of Illinois at Urbana-Champaign

Pablo Ordején Centre de Investigacié en Nanociéncia

i Nanotecnologia, (CSIC-ICN), Barcelona

Other contributors (we apologize for any omissions):

Eduardo Anglada, Thomas Archer, Luis C. Balbas, Xavier Blase, Ramon
Cuadrado, Michele Ceriotti, Raul de la Cruz, Gabriel Fabricius, Marivi
Fernandez-Serra, Jaime Ferrer, Chu-Chun Fu, Sandra Garcia, Victor M.
Garcia-Suarez, Georg Huhs, Rogeli Grima, Rainer Hoft, Jorge Kohanoff,
Richard Korytar, In-Ho Lee, Lin Lin, Nicolas Lorente, Miquel Llunell,
Eduardo Machado, Maider Machado, Jose Luis Martins, Volodymyr
Maslyuk, Juana Moreno, Frederico Dutilh Novaes, Micael Oliveira, Nick
Riibner Papior, Magnus Paulsson, Oscar Paz, Andrei Postnikov, Tristana
Sondon, Andrew Walker, Andrew Walkingshaw, Toby White, Francois

Institut de Ciéncia de Materials, CSIC, Barceloggilaime, Chao Yang.

O.F. Sankey, D.J. Niklewski and D.A. Drabold made the FIREBALL code
available to P. Ordejon. Although we no longer use the routines in that
code, it was essential in the initial development of SIESTA, which still
uses many of the algorithms developed by them.

Contents
Daniel Sanchez-Portal Unidad de Fisica de Materiales, .
Centro Mizto CSIC-UPV/EHU, San Sebastidn Contributors to SIESTA 1

José M. Soler Universidad Auténoma de Madrid 1 INTRODUCTION 5
The SIESTA project was initiated by Pablo Ordejon (then at the Univ. 2 COMPILATION 6
de Oviedo), and Jose M. Soler and Emilio Artacho (Univ. Autonoma de 2.1 The build directory 6
Madrid, UAM). The de'velopment t'eam was th(?n joined by Alberto Garcia 2.1.1 Multiple-target compilation -
(then at Univ. del Pais Vasco, Bilbao), Daniel Sanchez-Portal (UAM), ‘
and Javier Junquera (Univ. de Oviedo and later UAM), and sometime 2.2 The archmake file 7
later by Julian Gale (then at Imperial College, London). In 2007 Jose M. 2.3 Parallel, 7
Cela (Barcelona Supercomputing Center, BSC) became a core developer. 931 MPI 7
The current TranSIESTA module within SIESTA is developed by Nick 939 OpenMP g
R. Papior (then at Technical University of Denmark) and Mads Brand- o PORREE e
byge. The original TranSIESTA module was developed by Pablo Ordejon 2.4 Library dependencies 8
and Jose L. Mozos (then at ICMAB-CSIC), and Mads Brandbyge, Kurt
Stokbro, and Jeremy Taylor (Technical Univ. of Denmark). 3 EXECUTION OF THE PROGRAM 11

3.1 Specific execution options

THE FLEXIBLE DATA FORMAT (FDF)

PROGRAM OUTPUT
5.1 Standard output
5.2 Output to dedicated files.

DETAILED DESCRIPTION OF PROGRAM OPTIONS

6.1 General system descriptors

6.2 Pseudopotentials
6.3 Basis set and KB projectors

6.3.1 Overview of atomic-orbital bases implemented in

SIESTA
6.3.2 Typeofbasissets
6.3.3 Size of the basisset
6.3.4 Range of theorbitals
6.3.5 Generation of multiple-zeta orbitals
6.3.6 Soft-confinement options
6.3.7 Kleinman-Bylander projectors.
6.3.8 The PAO.Basis block
6.3.9 Filtering oL
6.3.10 Saving and reading basis-set information
6.3.11 Tools to inspect the orbitals and KB projectors . .
6.3.12 Basis optimization
6.3.13 Low-level options regarding the radial grid

6.4 Structural information

6.4.1 Traditional structure input in the fdf file

6.4.2 Z-matrix format and constraints

12

13

14
14
14

14
15
16
16

6.5

6.6
6.7
6.8
6.9

6.10
6.11

6.12

6.4.3 Output of structural information 31
6.4.4 Input of structural information from external files 32
6.4.5 Input froma FIFOfile. 32
6.4.6 Precedence issues in structural input 32
6.4.7 Interatomic distances 32
k-point sampling, 33
6.5.1 Output of k-point information 34
Exchange-correlation functionals 34
Spin polarization Lo 0oL 35
Spin—Orbit coupling 36
The self-consistent-field loop 37
6.9.1 Harris functional and basic options 37
6.9.2 Mixing options 38
6.9.3 Mixing of the Charge Density 42
6.9.4 Initialization of the density-matrix 43
6.9.5 Initialization of the SCF cycle with charge densities 45
6.9.6 Output of density matrix and Hamiltonian 45
6.9.7 Convergence criteria 46
The real-space grid and the eggbox-effect 48
Matrix elements of the Hamiltonian and overlap 50
6.11.1 The auxiliary supercell 50
Calculation of the electronic structure 51
6.12.1 Diagonalization options 51
6.12.2 Output of eigenvalues and wavefunctions 53
6.12.3 Occupation of electronic states and Fermi level . . 53
6.12.4 Orbital minimization method (OMM) 54
6.12.5 Order(N) calculations 55

6.13

6.14

6.15
6.16

6.17

6.18
6.19
6.20
6.21
6.22
6.23
6.24

The PEXSIsolver 57
6.13.1 Pole handling 57
6.13.2 Parallel environment and control options 57
6.13.3 Electron tolerance and the PEXSI solver 58
6.13.4 Inertia-counting 59
6.13.5 Re-use of p information accross iterations 60

6.13.6 Calculation of the density of states by inertia-counting 61

6.13.7 Calculation of the LDOS by selected-inversion . . 61
Band-structure analysis 61
6.14.1 Format of the .bands file. 62
6.14.2 Output of wavefunctions associated to bands . .. 63
Output of selected wavefunctions 63
Densities of stateso 0oL 64
6.16.1 Total density of states 64
6.16.2 Partial (projected) density of states 64
6.16.3 Local density of states 65
Options for chemical analysis 65
6.17.1 Mulliken charges and overlap populations 65

6.17.2 Voronoi and Hirshfeld atomic population analysis . 65
6.17.3 Crystal-Orbital overlap and hamilton populations

(COOP/COHP) 66
Optical properties 66
Macroscopic polarization 67
Maximally Localized Wannier Functions 69
Systems with net charge or dipole, and electric fields . . . 70
Output of charge densities and potentials on the grid . . . 72
Auxiliary Force field 74

Parallel options oL 75

6.24.1 Parallel decompositions for O(N)

6.25 Efficiency options

6.26 Memory, CPU-time, and Wall time accounting options . .
6.27 The catch-all option UseSaveData

6.28 Output of information for Denchar

6.29 NetCDF (CDF4) output file

STRUCTURAL RELAXATION, PHONONS,
MOLECULAR DYNAMICS

Compatibility with pre-v4 versions

Structural relaxation

Conjugate-gradients optimization

7.2.2 Broyden optimization
7.2.3 FIRE relaxation

Target stress options

Molecular dynamics

Output options for dynamics

Restarting geometry optimizations and MD runs
Use of general constraints

Phonon calculations

External control of SIESTA

9.1 Examples of Lua programs

TRANSIESTA
10.1 Brief description

10.2 Source code structure

87

88
90

10.3 Compilation o

10.4 Running a fast example

10.5 Brief explanation o0
10.6 Electrodes o o

10.7 TRANSIESTA Options

10.7.1 Quickand dirty
10.7.2 General options oL
10.7.3 Algorithm specific options

10.7.4 Poisson solution for fixed boundary conditions
10.7.5 Electrode description options
10.7.6 Chemical potentials

10.7.7 Complex contour integration options

10.7.8 Bias contour integration options

10.8 Matching TRANSIESTA coordinates: basic rules
10.9 Output

10.10Utilities for analysis: TBTRANS

11 ANALYSIS TOOLS

12 SCRIPTING

13 PROBLEM HANDLING

13.1 Error and warning messages

14 REPORTING BUGS
15 ACKNOWLEDGMENTS

16 APPENDIX: Physical unit names recognized by FDF

92

103

104

104
104

104

104

106

17 APPENDIX: XML Output

17.1 Controlling XML output

17.2 Converting XML to XHTML
18 APPENDIX: Selection of precision for storage
19 APPENDIX: Data structures and reference counting
Bibliography

Index

107
107
107

108

108

109

110

1 INTRODUCTION

This Reference Manual contains descriptions of all the input, output and
execution features of SIESTA, but is not really a tutorial introduction
to the program. Interested users can find tutorial material prepared for
SIESTA schools and workshops at the project’s web page http://www.
uam.es/siesta.

NOTE: See the description of changes in the logic of the SCF
loop

SIESTA (Spanish Initiative for Electronic Simulations with Thousands
of Atoms) is both a method and its computer program implementation, to
perform electronic structure calculations and ab initio molecular dynamics
simulations of molecules and solids. Its main characteristics are:

e It uses the standard Kohn-Sham selfconsistent density functional
method in the local density (LDA-LSD) and generalized gradient
(GGA) approximations, as well as in a non local functional that
includes van der Waals interactions (VDW-DF).

e It uses norm-conserving pseudopotentials in their fully nonlocal
(Kleinman-Bylander) form.

o It uses atomic orbitals as a basis set, allowing unlimited multiple-
zeta and angular momenta, polarization and off-site orbitals. The
radial shape of every orbital is numerical and any shape can be used
and provided by the user, with the only condition that it has to be of
finite support, i.e., it has to be strictly zero beyond a user-provided
distance from the corresponding nucleus. Finite-support basis sets
are the key for calculating the Hamiltonian and overlap matrices in
O(N) operations.

e Projects the electron wavefunctions and density onto a real-space
grid in order to calculate the Hartree and exchange-correlation po-
tentials and their matrix elements.

¢ Besides the standard Rayleigh-Ritz eigenstate method, it allows the
use of localized linear combinations of the occupied orbitals (valence-
bond or Wannier-like functions), making the computer time and

memory scale linearly with the number of atoms. Simulations with
several hundred atoms are feasible with modest workstations.

o It is written in Fortran 95 and memory is allocated dynamically.

o It may be compiled for serial or parallel execution (under MPI).
It routinely provides:

o Total and partial energies.

¢ Atomic forces.

e Stress tensor.

¢ Electric dipole moment.

o Atomic, orbital and bond populations (Mulliken).

o FElectron density.
And also (though not all options are compatible):

e Geometry relaxation, fixed or variable cell.

o Constant-temperature molecular dynamics (Nose thermostat).
o Variable cell dynamics (Parrinello-Rahman).

 Spin polarized calculations (collinear or not).

o k-sampling of the Brillouin zone.

e Local and orbital-projected density of states.

e COOP and COHP curves for chemical bonding analysis.

o Dielectric polarization.

 Vibrations (phonons).

e Band structure.

http://www.uam.es/siesta
http://www.uam.es/siesta

« Ballistic electron transport under non-equilibrium (through TRAN-

STESTA)

Starting from version 3.0, SIESTA includes the TRANSIESTA mod-
ule. TRANSIESTA provides the ability to model open-boundary systems
where ballistic electron transport is taking place. Using TRANSIESTA
one can compute electronic transport properties, such as the zero bias
conductance and the I-V characteristic, of a nanoscale system in contact
with two electrodes at different electrochemical potentials. The method is
based on using non equilibrium Greens functions (NEGF), that are con-
structed using the density functional theory Hamiltonian obtained from
a given electron density. A new density is computed using the NEGF
formalism, which closes the DFT-NEGF self consistent cycle.

For more details on the formalism, see the main TRANSIESTA reference
cited below. A section has been added to this User’s Guide, that describes
the necessary steps involved in doing transport calculations, together with
the currently implemented input options.

References:

¢ “Unconstrained minimization approach for electronic computations
that scales linearly with system size” P. Ordején, D. A. Drabold, M.
P. Grumbach and R. M. Martin, Phys. Rev. B 48, 14646 (1993);
“Linear system-size methods for electronic-structure calculations”
Phys. Rev. B 51 1456 (1995), and references therein.

Description of the order-N eigensolvers implemented in this code.
o “Self-consistent order-IN density-functional calculations for very

large systems” P. Ordején, E. Artacho and J. M. Soler, Phys. Rev.
B 53, 10441, (1996).

Description of a previous version of this methodology.

e “Density functional method for very large systems with LCAO basis
sets” D. Sanchez-Portal, P. Ordején, E. Artacho and J. M. Soler, Int.
J. Quantum Chem., 65, 453 (1997).

Description of the present method and code.

¢ “Linear-scaling ab-initio calculations for large and complex systems”
E. Artacho, D. Sanchez-Portal, P. Ordején, A. Garcia and J. M.
Soler, Phys. Stat. Sol. (b) 215, 809 (1999).

Description of the numerical atomic orbitals (NAOs) most com-
monly used in the code, and brief review of applications as of March
1999.

e “Numerical atomic orbitals for linear-scaling calculations” J. Jun-
quera, O. Paz, D. Sanchez-Portal, and E. Artacho, Phys. Rev. B
64, 235111, (2001).

Improved, soft-confined NAOs.
¢ “The STESTA method for ab initio order- N materials simulation” J.
M. Soler, E. Artacho, J.D. Gale, A. Garcia, J. Junquera, P. Ordejon,

and D. Sanchez-Portal, J. Phys.: Condens. Matter 14, 2745-2779
(2002)

Extensive description of the SIESTA method.
e “Computing the properties of materials from first principles with

SIESTA”, D. Sanchez-Portal, P. Ordején, and E. Canadell, Struc-
ture and Bonding 113, 103-170 (2004).

Extensive review of applications as of summer 2003.

¢ “Density-functional method for nonequilibrium electron transport”,
Mads Brandbyge, Jose-Luis Mozos, Pablo Ordejon, Jeremy Taylor,
and Kurt Stokbro, Phys. Rev. B 65, 165401 (2002).

Description of the TRANSIESTA method.

For more information you can visit the web page http://www.uam.es/
siestal

2 COMPILATION

2.1 The build directory

Rather than using the top-level Src directory as building directory, the
user has to use an ad-hoc building directory (by default the top-level 0bj

http://www.uam.es/siesta
http://www.uam.es/siesta

directory, but it can be any (new) directory in the top level). The build-
ing directory will hold the object files, module files, and libraries resulting
from the compilation of the sources in Src. The VPATH mechanism of mod-
ern make programs is used. This scheme has many advantages. Among
them:

e The Src directory is kept pristine.

e Many different object directories can be used concurrently to com-
pile the program with different compilers or optimization levels.

If you just want to compile the program, go to Obj and issue the command:

sh ../Src/obj_setup.sh

to populate this directory with the minimal scaffolding of makefiles, and
then make sure that you create or generate an appropriate arch.make file
(see below, in Sec. 2.2). Then, type

make

The executable should work for any job. (This is not exactly true, since
some of the parameters in the atomic routines are still hardwired (see
Src/atmparams.f), but those would seldom need to be changed.)

To compile utility programs (those living in Util), you can just simply
use the provided makefiles, typing “make” as appropriate.

2.1.1 Multiple-target compilation

The mechanism described here can be repeated in other directories at the
same level as Obj, with different names. In this way one can compile as
many different versions of the SIESTA executable as needed (for exam-
ple, with different levels of optimization, serial, parallel, debug, etc), by
working in separate building directories.

Simply provide the appropriate arch.make, and issue the setup command
above. To compile utility programs, you need to use the form:

make O0BJDIR=0bjName

where ObjName is the name of the object directory of your choice. Be sure
to type make clean before attempting to re-compile a utility program.

(The pristine Src directory should be kept "clean", without objects, or else
the compilation in the build directories will get confused)

2.2 The arch.make file

The compilation of the program is done using a Makefile that is provided
with the code. This Makefile will generate the executable for any of
several architectures, with a minimum of tuning required from the user
and encapsulated in a separate file called arch.make.

You are strongly encouraged to look at 0bj/DOCUMENTED-TEMPLATE . make
for information about the fine points of the arch.make file. There are two
sample make files for compilation of SIESTA with gfortran and ifort
named Obj/gfortran.make and Obj/intel.make, respectively. Please
use those as guidelines for creating the final arch.make.

2.3 Parallel

To achieve a parallel build of SIESTA one should first determine which
type of parallelism one requires. It is advised to use MPI for calculations

with moderate number of cores. If one requires eXa-scale parallelism
SIESTA provides hybrid parallelism using both MPI and OpenMP.

2.3.1 MPI

MPI is a message-passing interface which enables communication between
equivalently executed binaries. This library will thus duplicate all non-
distributed data such as local variables etc.

To enable MPI in SIESTA the compilation options are required to be
changed accordingly, here is the most basic changes to the arch.make for
standard binary names

CC = mpicc

FC = mpifort # or mpif90
MPI_INTERFACE = libmpi_£90.a
MPI_INCLUDE = .

FPPFLAGS += -DMPI

Subsequently one may run SIESTA using the mpirun/mpiexec com-
mands:

mpirun -np <> siesta RUN.fdf

where <> is the number of cores used.

2.3.2 OpenMP

OpenMP is shared memory parallelism. It typically does not infer any
memory overhead and may be used if memory is scarce and the regular
MPI compilation is crashing due to insufficient memory.

To enable OpenMP, simply add this to your arch.make

For GNU compiler

FFLAGS += -fopenmp

LIBS += -fopenmp

or, for Intel compiler < 16
FFLAGS += -openmp

LIBS += -openmp

or, for Intel compiler >= 16
FFLAGS += -qopenmp

LIBS += -gopenmp

The above will yield the most basic parallelism using OpenMP. However,
the BLAS/LAPACK libraries which is the most time-consuming part of
SIESTA also requires to be threaded, please see Sec. 2.4 for correct link-
ing.

Subsequently one may run SIESTA using OpenMP through the en-
vironment variable OMP_NUM_THREADS which determine the number of
threads/cores used in the execution.

OMP_NUM_THREADS=<> siesta RUN.fdf
or (bash)

export OMP_NUM_THREADS=<>

siesta RUN.fdf

or (csh)

setenv OMP_NUM_THREADS <>

siesta RUN.fdf

where <> is the number of threads/cores used.

If STIESTA is also compiled using MPI it is more difficult to obtain a
good performance. Please refer to your local cluster how to correctly call
MPI with hybrid parallelism. An example for running STESTA with good
performance using OpenMPI > 1.8.2 and OpenMP on a machine with 2
sockets and 8 cores per socket, one may do:

MPI = 2 cores, OpenMP = 8 threads per core (total=16)
mpirun --map-by ppr:1l:socket:pe=8 \

-x OMP_NUM_THREADS=8 \

-x OMP_PROC_BIND=true siesta RUN.fdf

MPI = 4 cores, OpenMP = 4 threads per core (total=16)
mpirun --map-by ppr:2:socket:pe=4 \

-x OMP_NUM_THREADS=4 \

-x OMP_PROC_BIND=true siesta RUN.fdf

MPI = 8 cores, OpenMP = 2 threads per core (total=16)
mpirun --map-by ppr:4:socket:pe=2 \

-x OMP_NUM_THREADS=2 \

-x OMP_PROC_BIND=true siesta RUN.fdf

If using only 1 thread per MPI core it is advised to compile SIESTA
without OpenMP. As such it may be advantageous to compile STIESTA
in 3 variants; OpenMP-only (small systems), MPI-only (medium to large
systems) and MPI+OpenMP (large+ systems).

2.4 Library dependencies

SIESTA makes use of several libraries. Here we list a set of libraries and
how each of them may be added to the compilation step (arch.make).

SIESTA is distributed with scripts that install the most useful libraries.
These installation scripts may be located in the Docs/ folder with names:
install_*.bash. Currently SIESTA is shipped with these installation
scripts:

e install_netcdf4.bash; installs NetCDF with full CDF4 support.
Thus it installs zlib, hdf5 and NetCDF C and Fortran.

e install_flook.bash; installs flook which enables interaction with
Lua and STESTA.

Note that these scripts are guidance scripts and users are encouraged
to check the mailing list for or seek help there in non-standard. The
installation scripts finishes by telling what to add to the arch.make file
to correctly link the just installed libraries.

BLAS it is recommended to use a high-performance library (OpenBLAS
or MKL library from Intel)

o If you use your *nix distribution package manager to install
BLAS you are bound to have a poor performance. Please try
and use performance libraries, whenever possible!

e If you do not have the BLAS library you may use the
BLAS library shipped with SIESTA. To do so simply add
libsiestaBLAS.a to the COMP_LIBS variable.

To add BLAS to the arch.make file you need to add the required
linker flags to the LIBS variable in the arch.make file.

Example variables

OpenBLAS:
LIBS += -L/opt/openblas/1lib -lopenblas
or for MKL

LIBS += -L/opt/intel/.../mkl/lib/intel64 -1lmkl_blas95_1p64 ...

To use the threaded (OpenMP) libraries, change the above linking
to

OpenBLAS:

LIBS += -L/opt/openblas/1lib -lopenblasp

or for MKL

LIBS += -L/opt/intel/.../mkl/lib/intel64 -1lmkl_blas95_lp64
-1lmkl <> thread ...

where <> is the compiler used (intel or gnu).

LAPACK it is recommended to use a high-performance library (Open-

BLAS! or MKL library from Intel)

If you do not have the LAPACK library you may use the
LAPACK library shipped with STESTA. To do so simply add
libsiestalAPACK.a to the COMP_LIBS variable.

Example variables

OpenBLAS (OpenBLAS will default to build in LAPACK 3.6)
LIBS += -L/opt/openblas/1lib -lopenblas
or for MKL

LIBS += -L/opt/intel/.../mkl/1ib/intel64 -1lmkl_lapack95_lp64 ..

To use the threaded (OpenMP) libraries, change the above linking
to

OpenBLAS (OpenBLAS will default to build in LAPACK 3.6)

LIBS += -L/opt/openblas/1ib -lopenblasp

or for MKL

LIBS += -L/opt/intel/.../mkl/1lib/intel64 -1mkl_lapack95_lp64
-1mkl <> thread ...

where <> is the compiler used (intel or gnu).

ScaLAPACK Only required for MPI compilation.

Here one may be sufficient to rely on the NetLIB? version of ScalLA-
PACK.

Example variables

ScaLAPACK
LIBS += -L/opt/scalapack/lib -lscalapack
or for MKL

1OpenBLAS enables the inclusion of the LAPACK routines. This is advised.
2ScalLAPACKSs performance is mainly governed by BLAS and LAPACK.

https://github.com/xianyi/OpenBLAS
https://github.com/xianyi/OpenBLAS
https://github.com/xianyi/OpenBLAS

LIBS += -L/opt/intel/.../mkl/lib/intel64 -1lmkl_scalapack_lp64 To

-1mkl_blacs_<>_1p64 ...

where <> refers to the MPI version used, (intelmpi, openmpi,
sgimpt).

Additionally SIESTA may be compiled with support for several other
libraries

fdict This library is shipped with STESTA and its linking may be enabled
by

COMP_LIBS += libfdict.a

NetCDF' It is adviced to compile NetCDF in CDF4 compliant mode
(thus also linking with HDF5) as this enables more advanced 10. If
you only link against a CDF3 compliant library you will not get the
complete feature set of SIESTA.

3 If the CDF3 compliant library is present one may add this to your
arch.make:
LIBS += -L/opt/netcdf/1ib -lnetcdff -lnetcdf
FPPFLAGS += -DCDF
4 If the CDF4 compliant library is present the HDF5 libraries are
also required at link time:

LIBS += -L/opt/netcdf/1lib -lnetcdff -lnetcdf \
-1hdf5_fortran -1hdfb5 -1z

ncdf This library is shipped with STESTA and its linking is required
to take advantage of the CDF4 library functionalities. To use this
library, ensure that you can compile SIESTA with CDF4 support.
Then proceed by adding the following to your arch.make

COMP_LIBS += libncdf.a libfdict.a
FPPFLAGS += -DNCDF -DNCDF_4

If the NetCDF library is compiled with parallel support one may
take advantage of parallel IO by adding this to the arch.make

FPPFLAGS += -DNCDF_PARALLEL

easily install NetCDF please the installation file:

Docs/install_netcdf4.bash.

see

Metis| The Metis library may be used in the Order-N code.
Add these flags to your arch.make file to enable Metis

LIBS += -L/opt/metis/lib -lmetis
FPPFLAGS += -DSIESTA__METIS

MUMPS The MUMPS library may currently be used with TRANSI-
ESTA.

Add these flags to your arch.make file to enable MUMPS

LIBS += -L/opt/mumps/1lib -lzmumps -lmumps_common <>
FPPFLAGS += -DSIESTA__MUMPS

where <> are any libraries that MUMPS depend on.

PEXSI The PEXSI library may be used with SIESTA for exa-scale
calculations, see Sec. 6.13. Currently the interface is implemented
(tested) as in PEXSI version 0.8.0, 0.9.0 and 0.9.2. If newer versions
retain the same interface they may also be used.

To successfully compile SIESTA with PEXSI support one require
the PEXSI fortran interface. When installing PEXSI copy the
f_interface.f90 file to the include directory of PEXSI such that
the module may be found® when compiling SIESTA.

Add these flags to your arch.make file to enable PEXSI

INCFLAGS += -I/opt/pexsi/include
LIBS += -L/opt/pexsi/lib -lpexsi_linux <>
FPPFLAGS += -DSIESTA__PEXSI

where <> are any libraries that PEXSI depend on. If one experiences
linker failures, one possible solution that may help is

LIBS += -1lmpi_cxx -lstdc++

30Optionally the file may be copied to the Obj directory where the compilation takes
place.

10

https://github.com/zerothi/fdict
https://www.unidata.ucar.edu/software/netcdf
https://github.com/zerothi/ncdf
http://glaros.dtc.umn.edu/gkhome/metis/metis/overview
http://mumps.enseeiht.fr
https://math.berkeley.edu/~linlin/pexsi

which is due to PEXSI being a C++ library, and the Fortran com-
piler is the linker. The exact library name for your MPI vendor may
vary.

Additionally the PEXSI linker step may have duplicate objects
which can be circumvented by prefixing the PEXSI libraries with

LIBS += -Wl,--allow-multiple-definition -lpexsi_linux <>

flook STESTA allows external control via the LUA scripting language.
Using this library one may do advanced MD simulations and much
more without changing any code in SIESTA.

Add these flags to your arch.make file to enable flook

LIBS += -L/opt/flook/1lib -1flookall -1dl
COMP_LIBS += libfdict.a
FPPFLAGS += -DSIESTA__FLOOK

See Tests/h20_lua for an example on the LUA interface.

To easily install flook please the
Docs/install_flook.bash.

see installation file:

3 EXECUTION OF THE PROGRAM

A fast way to test your installation of SIESTA and get a feeling for the
workings of the program is implemented in directory Tests. In it you can
find several subdirectories with pre-packaged FDF files and pseudopoten-
tial references. Everything is automated: after compiling SIESTA you
can just go into any subdirectory and type make. The program does its
work in subdirectory work, and there you can find all the resulting files.
For convenience, the output file is copied to the parent directory. A col-
lection of reference output files can be found in Tests/Reference. Please
note that small numerical and formatting differences are to be expected,
depending on the compiler. (For non-standard execution environments,
including queuing systems, have a look at the Scripts in Tests/Scripts,
and see also Sec. 2.3.)

Other examples are provided in the Examples directory. This directory
contains basically .fdf files and the appropriate pseudopotential genera-
tion input files. Since at some point you will have to generate your own

11

pseudopotentials and run your own jobs, we describe here the whole pro-
cess by means of the simple example of the water-molecule. It is advisable
to create independent directories for each job, so that everything is clean
and neat, and out of the SIESTA directory, so that one can easily update
version by replacing the whole STESTA tree. Go to your favorite working
directory and:

$ mkdir h2o
$ cd h2o
$ cp path-to-package/Examples/H20/h20.fdf

You need to make the siesta executable visible in your path. You can do
it in many ways, but a simple one is

$ 1n -s path-to-package/Obj/siesta

We need to generate the required pseudopotentials. (We are going to
streamline this process for this time, but you must realize that this is a
tricky business that you must master before using STESTA responsibly.
Every pseudopotential must be thoroughly checked before use. Please
refer to the ATOM program manual for details regarding what follows.)

NOTE: The ATOM program is no longer bundled with SIESTA, but
academic users can dowload it from the SIESTA webpage at www. icmab.
es/siesta.

$ cd path/to/atom/package/

(Compile the program following the instructions)
$ cd Tutorial/PS_Generation/0

$ cat 0.tm2.inp

This is the input file, for the oxygen pseudopotential, that we have pre-
pared for you. It is in a standard (but ancient and obscure) format that
you will need to understand in the future:

https://github.com/electronicstructurelibrary/flook
www.icmab.es/siesta
www.icmab.es/siesta

=0 c=ca
0.0 0.0 0.0 0.0 0.0 0.0
1 4
2 0 2.00 0.00
2 1 4.00 0.00
3 2 0.00 0.00
4 3 0.00 0.00
1.15 1.15 1.15 1.15

To generate the pseudopotential do the following;

$ sh ../../Utils/pg.sh 0.tm2.inp

Now there should be a new subdirectory called O.tm2 (O for oxygen) and
0.tm2.vps (binary) and 0.tm2.psf (ASCII) files.

$ cp 0.tm2.psf path-to-working-dir/h20/0.psf

copies the generated pseudopotential file to your working directory. (The
unformatted and ASCII files are functionally equivalent, but the latter
is more transportable and easier to look at, if you so desire.) The same
could be repeated for the pseudopotential for H, but you may as well copy
H.psf from Examples/Vps/ to your h2o working directory.

Now you are ready to run the program:

./siesta < h2o0.fdf | tee h2o0.out

(If you are running the parallel version you should use some other invo-
cation, such as mpirun -np 2 siesta ..., but we cannot go into that
here — see Sec. 2.3).

After a successful run of the program, you should have several files in your
directory including the following:

o fdf.log (contains all the data used, explicit or chosen by default)

e O.ion and H.on (complete information about the basis and KB
projectors)

e h20.XV (contains positions and velocities)

e h20.STRUCT_OUT (contains the final cell vectors and positions in
“crystallographic” format)

e h20.DM (contains the density matrix to allow a restart)

e h20.ANT (contains the coordinates of every MD step, in this case
only one)

o h20.FA (contains the forces on the atoms)
e h20.EIG (contains the eigenvalues of the Kohn-Sham Hamiltonian)

e h2o0.xml (XML marked-up output)

The prefix h2o of all these files is the SystemLabel specified in the input
h2o.fdf file (see FDF section below). The standard output of the program,
that you have already seen passing on the screen, was copied to file h20.out
by the tee command. Have a look at it and refer to the output-explanation
section if necessary. You may also want to look at the fdf.log file to see
all the default values that siesta has chosen for you, before studying the
input-explanation section and start changing them.

Now look at the other data files in Examples (all with an .fdf suffix) choose
one and repeat the process for it.

3.1 Specific execution options
SIESTA may be executed in different forms. The basic execution form is

siesta < RUN.fdf > RUN.out

which uses a pipe statement. Since 4.1 SIESTA does not require one to
pipe in the input file and the input file may instead be specified on the
command line.

siesta RUN.fdf > RUN.out
This allows for SIESTA to accept special flags described in what follows.
Fach flag may be quoted if it contains spaces, or one may substitute spaces

by :.

-h print a help instruction and quit

12

-L Override, temporarily, the SystemLabel flag.

siesta -L Hello.

-out|-o Specify the output file (instead of printing to the terminal).

siesta -out RUN.out.
Additionally TRANSIESTA accepts these flags:

-V specify the bias for the current TRANSTESTA run.

transiesta -V 0.25:eVor transiesta -V "0.25 eV" which sets the
applied bias to 0.25¢€V.

4 THE FLEXIBLE DATA FORMAT (FDF)

The main input file, which is read as the standard input (unit 5), contains
all the physical data of the system and the parameters of the simulation
to be performed. This file is written in a special format called FDF,
developed by Alberto Garcia and José M. Soler. This format allows data
to be given in any order, or to be omitted in favor of default values. Refer
to documentation in ~/siesta/Src/fdf for details. Here we offer a glimpse
of it through the following rules:

e The FDF syntax is a ’data label’” followed by its value. Values that
are not specified in the datafile are assigned a default value.

e FDF labels are case insensitive, and characters - _ . in a data label
are ignored. Thus, LatticeConstant and lattice_ constant represent
the same label.

o All text following the # character is taken as comment.

e Logical values can be specified as T, true, .true., yes, F, false, .false.,
no. Blank is also equivalent to true.

e Character strings should not be in apostrophes.

e Real values which represent a physical magnitude must be fol-
lowed by its units. Look at function fdf convfac in file

13

~ /siesta/Src/fdf/fdf.f for the units that are currently supported.
It is important to include a decimal point in a real number to dis-
tinguish it from an integer, in order to prevent ambiguities when
mixing the types on the same input line.

Complex data structures are called blocks and are placed between
‘Yoblock label” and a ‘%endblock label’ (without the quotes).

You may ‘include’ other FDF files and redirect the search for a par-
ticular data label to another file. If a data label appears more than
once, its first appearance is used.

If the same label is specified twice, the first one takes precedence.

If a label is misspelled it will not be recognized (there is no internal
list of “accepted” tags in the program). You can check the actual
value used by siesta by looking for the label in the output fdf.log
file.

These are some examples:

SystemName Water molecule # This is a comment
SystemLabel h2o

SpinPolarized yes

SaveRho

NumberOfAtoms 64

LatticeConstant 5.42 Ang

%block LatticeVectors
1.000 0.000 0.000
0.000 1.000 0.000
0.000 0.000 1.000
%endblock LatticeVectors
KgridCutoff < BZ_sampling.fdf

Reading the coordinates from a file

%block AtomicCoordinatesAndAtomicSpecies < coordinates.de

Even reading more FDF information from somewhere else

%include mydefaults.fdf

The file fdf.log contains all the parameters used by SIESTA in a given
run, both those specified in the input fdf file and those taken by default.
They are written in fdf format, so that you may reuse them as input
directly. Input data blocks are copied to the fdf.log file only if you specify
the dump option for them.

5 PROGRAM OUTPUT

5.1 Standard output

SIESTA writes a log of its workings to standard output (unit 6), which
is usually redirected to an “output file”.

A Dbrief description follows. See the example cases in the siesta/Tests

directory for illustration.

The program starts writing the version of the code which is used. Then,
the input FDF file is dumped into the output file as is (except for empty
lines). The program does part of the reading and digesting of the data
at the beginning within the redata subroutine. It prints some of the
information it digests. It is important to note that it is only part of it,
some other information being accessed by the different subroutines when
they need it during the run (in the spirit of FDF input). A complete list
of the input used by the code can be found at the end in the file £df.log,
including defaults used by the code in the run.

After that, the program reads the pseudopotentials, factorizes them into
Kleinman-Bylander form, and generates (or reads) the atomic basis set
to be used in the simulation. These stages are documented in the output
file.

The simulation begins after that, the output showing information of the
MD (or CG) steps and the SCF cycles within. Basic descriptions of the
process and results are presented. The user has the option to customize it,
however, by defining different options that control the printing of informa-
tions like coordinates, forces, k points, etc. The options are discussed in
the appropriate sections, but take into account the behavior of the legacy
LongOutput option, as in the current implementation might silently
activate output to the main .out file at the expense of auxiliary files.

14

(logical)
SIESTA can write to standard output different data sets depending
on the values for output options described below. By default STESTA
will not write most of them. They can be large for large systems
(coordinates, eigenvalues, forces, etc.) and, if written to standard
output, they accumulate for all the steps of the dynamics. SIESTA
writes the information in other files (see Output Files) in addition to
the standard output, and these can be cumulative or not.

LongOutput false

Setting LongOutput to true changes the default of some options,
obtaining more information in the output (verbose). In particular, it
redefines the defaults for the following:

e WriteKpoints
WriteKbands

WriteCoorStep

e WriteForces
WriteEigenvalues
WriteWaveFunctions

WriteMullikenPop(it sets it to 1)

The specific changing of any of these options has precedence.

5.2 Output to dedicated files

SIESTA can produce a wealth of information in dedicated files, with
specific formats, that can be used for further analysis. See the appropriate
sections, and the appendix on file formats. Please take into account the
behavior of LongOutput, as in the current implementation might silently
activate output to the main .out file at the expense of auxiliary files.

6 DETAILED DESCRIPTION OF PROGRAM
OPTIONS

Here follows a description of the variables that you can define in your
SIESTA input file, with their data types and default values. For historical

be used to identify corresponding files, namely, pseudopotential file,
user basis file, basis output file, and local pseudopotential output file.

reasons the names of the tags do not have an uniform structure, and can
be confusing at times.

This construction allows you to have atoms of the same species but
with different basis or pseudopotential, for example.

Almost all of the tags are optional: STESTA will assign a default if a

given tag is not found when needed (see £df.log).
Negative atomic numbers are used for ghost atoms (see PAO.Basis).

For atomic numbers over 200 or below —200 you should read Syn-

6.1 General system descriptors theticAtoms.
SystemLabel siesta (string) NOTE: this block is mandatory.
A single word (max. 20 characters without blanks) containing a nick-
name of the system, used to name output files. 7oblock SyntheticAtoms (None) (block)
This block is an additional block to complement ChemicalSpecies-
SystemName (None) (string) Label for special atomic numbers.
A string of one or several words containing a descriptive name of the Atomic numbers over 200 are used to represent synthetic atoms (cre-
system (max. 150 characters). ated for example as a “mixture” of two real ones for a “virtual
. crystal” (VCA) calculation). In this special case a new Synthet-
NumberOfSpe.mes (llnes. m Cl?en?lcalSpfemesL.abel} (integer) icAtoms(bloclz must be pre)sent to give SIESTA information about
Number of different atomic species in the simulation. Atoms of the the “ground state” of the synthetic atom.
same species, but with a different pseudopotential or basis set are
counted as different species. %blcl’Ck ggiméﬁagsgggégsmbel
NOTE: is not required to be set. %endblock ChemicalSpeciesLabel
NumberOfAtoms (lines in #block SyntheticAtoms

AtomicCoordinatesAnd AtomicSpecies) (integer)

1 # Species index

2234 # n numbers for valence states with 1=0,1
Number of atoms in the simulation. 2.0 3.5 0.0 0.0 # occupations of valence states with 1=0,1
NOTE: is not required to be set. hendblock SyntheticAtoms
%block ChemicalSpeciesLabel (None) (block) Pseudopotentials for synthetic atoms can be created using the mixps

It specifies the different chemical species that are present, assigning
them a number for further identification. SIESTA recognizes the
different atoms by the given atomic number.

%block ChemicalSpecieslabel

and fractional programs in the Util/VCA directory.
Atomic numbers below —200 represent ghost synthetic atoms.

%block AtomicMass (None) (block)
It allows the user to introduce the atomic masses of the different

1 6 C. species used in the calculation, useful for the dynamics with isotopes,
2 14 & for example. If a species index is not found within the block, the
3 14 Si_surface

%endblock ChemicalSpecieslabel

The first number in a line is the species number, it is followed by
the atomic number, and then by the desired label. This label will

15

natural mass for the corresponding atomic number is assumed. If
the block is absent all masses are the natural ones. One line per
species with the species index (integer) and the desired mass (real).
The order is not important. If there is no integer and/or no real

numbers within the line, the line is disregarded.

%block AtomicMass
3 21.5
1 3.2
%endblock AtomicMass

The default atomic mass are the natural masses. For ghost atoms
(i.e. floating orbitals) the mass is 103" a.u.

6.2 Pseudopotentials

SIESTA uses pseudopotentials to represent the electron-ion interac-
tion (as do most plane-wave codes and in contrast to so-called “all-
electron” programs). In particular, the pseudopotentials are of the
“norm-conserving” kind, and can be generated by the Atom program, (see
Pseudo/README.ATOM). Remember that all pseudopotentials should
be thoroughly tested before using them. We refer you to the standard
literature on pseudopotentials and to the ATOM manual for more informa-
tion. A number of other codes (such as APE) can generate pseudopotentials
that SIESTA can use directly (typically in the .psf format).

The pseudopotentials will be read by STESTA from different files, one for
each defined species (species defined either in block ChemicalSpecies-
Label). The name of the files should be:

Chemical__label .vps (unformatted) or Chemical_label.psf (ASCII)

where Chemical label corresponds to the label defined in the Chemical-
SpeciesLabel block.

6.3 Basis set and KB projectors

6.3.1 Overview of atomic-orbital bases in

SIESTA

implemented

The main advantage of atomic orbitals is their efficiency (fewer orbitals
needed per electron for similar precision) and their main disadvantage is
the lack of systematics for optimal convergence, an issue that quantum
chemists have been working on for many years. They have also clearly

16

shown that there is no limitation on precision intrinsic to LCAQ. This
section provides some information about how basis sets can be generated
for STESTA.

It is important to stress at this point that neither the SIESTA method nor
the program are bound to the use of any particular kind of atomic orbitals.
The user can feed into STESTA the atomic basis set he/she choses by
means of radial tables (see User.Basis below), the only limitations being:
(i) the functions have to be atomic-like (radial functions mutiplied by
spherical harmonics), and (ii) they have to be of finite support, i.e., each
orbital becomes strictly zero beyond some cutoff radius chosen by the
user.

Most users, however, do not have their own basis sets. For these users
we have devised some schemes to generate basis sets within the program
with a minimum input from the user. If nothing is specified in the input
file, Siesta generates a default basis set of a reasonable quality that might
constitute a good starting point. Of course, depending on the accuracy
required in the particular problem, the user has the degree of freedom to
tune several parameters that can be important for quality and efficiency.
A description of these basis sets and some performance tests can be found
in the references quoted below.

“Numerical atomic orbitals for linear-scaling calculations", J. Junquera,
O. Paz, D. Sanchez-Portal, and E. Artacho, Phys. Rev. B 64, 235111,
(2001)

An important point here is that the basis set selection is a variational
problem and, therefore, minimizing the energy with respect to any pa-
rameters defining the basis is an “ab initio" way to define them.

We have also devised a quite simple and systematic way of generating
basis sets based on specifying only one main parameter (the energy shift)
besides the basis size. It does not offer the best NAO results one can
get for a given basis size but it has the important advantages mentioned
above. More about it in:

“Linear-scaling ab-initio calculations for large and complex systems", E.
Artacho, D. Sadnchez-Portal, P. Ordején, A. Garcia and J. M. Soler, Phys.
Stat. Sol. (b) 215, 809 (1999).

In addition to STESTA we provide the program Gen-basis , which reads

SIESTA’s input and generates basis files for later use. Gen-basis can be
found in Util/Gen-basis. It should be run from the Tutorials/Bases
directory, using the gen-basis.sh script. It is limited to a single species.

Of course, as it happens for the pseudopotential, it is the responsibility
of the user to check that the physical results obtained are converged with
respect to the basis set used before starting any production run.

In the following we give some clues on the basics of the basis sets that
SIESTA generates. The starting point is always the solution of Kohn-
Sham’s Hamiltonian for the isolated pseudo-atoms, solved in a radial grid,
with the same approximations as for the solid or molecule (the same
exchange-correlation functional and pseudopotential), plus some way of
confinement (see below). We describe in the following three main features
of a basis set of atomic orbitals: size, range, and radial shape.

Size: number of orbitals per atom

Following the nomenclature of Quantum Chemistry, we establish a hierar-
chy of basis sets, from single-¢ to multiple-{ with polarization and diffuse
orbitals, covering from quick calculations of low quality to high preci-
sion, as high as the finest obtained in Quantum Chemistry. A single-¢
(also called minimal) basis set (SZ in the following) has one single ra-
dial function per angular momentum channel, and only for those angular
momenta with substantial electronic population in the valence of the free
atom. It offers quick calculations and some insight on qualitative trends
in the chemical bonding and other properties. It remains too rigid, how-
ever, for more quantitative calculations requiring both radial and angular
flexibilization.

Starting by the radial flexibilization of SZ, a better basis is obtained by
adding a second function per channel: double-¢ (DZ). In Quantum Chem-
istry, the split valence scheme is widely used: starting from the expansion
in Gaussians of one atomic orbital, the most contracted Gaussians are
used to define the first orbital of the double-¢ and the most extended
ones for the second. For strictly localized functions there was a first pro-
posal of using the excited states of the confined atoms, but it would work
only for tight confinement (see PAO.BasisType nodes below). This con-
struction was proposed and tested in D. Sdnchez-Portal et al., J. Phys.:
Condens. Matter 8, 3859-3880 (1996).

17

We found that the basis set convergence is slow, requiring high levels of
multiple-(to achieve what other schemes do at the double-C level. This
scheme is related with the basis sets used in the OpenMX project [see T.
Ozaki, Phys. Rev. B 67, 155108 (2003); T. Ozaki and H. Kino, Phys.
Rev. B 69, 195113 (2004)].

We then proposed an extension of the split valence idea of Quantum
Chemistry to strictly localized NAO which has become the standard and
has been used quite successfully in many systems (see PAO.BasisType
split below). It is based on the idea of suplementing the first ¢ with,
instead of a gaussian, a numerical orbital that reproduces the tail of the
original PAO outside a matching radius r,,, and continues smoothly to-
wards the origin as r!(a — br?), with ¢ and b ensuring continuity and
differentiability at r,,. Within exactly the same Hilbert space, the sec-
ond orbital can be chosen to be the difference between the smooth one
and the original PAO, which gives a basis orbital strictly confined within
the matching radius r,, (smaller than the original PAQ!) continuously
differentiable throughout.

Extra parameters have thus appeared: one r,, per orbital to be doubled.
The user can again introduce them by hand (see PAO.Basis below). Al-
ternatively, all the r;,’s can be defined at once by specifying the value of
the tail of the original PAO beyond r,,, the so-called split norm. Vari-
ational optimization of this split norm performed on different systems
shows a very general and stable performance for values around 15% (ex-
cept for the ~ 50% for hydrogen). It generalizes to multiple-(trivially by
adding an additional matching radius per new zeta.

Note: What is actually used is the norm of the tail plus the norm of the
parabola-like inner function.

Angular flexibility is obtained by adding shells of higher angular momen-
tum. Ways to generate these so-called polarization orbitals have been
described in the literature for Gaussians. For NAOs there are two ways
for SIESTA and Gen-basis to generate them: (i) Use atomic PAO’s of
higher angular momentum with suitable confinement, and (ii) solve the
pseudoatom in the presence of an electric field and obtain the [+ 1 orbitals
from the perturbation of the [orbitals by the field.

So-called diffuse orbitals, that might be important in the description of
open systems such as surfaces, can be simply added by specifying extra

“n” shells. [See S. Garcia-Gil, A. Garcia, N. Lorente, P. Ordejon, Phys.
Rev. B 79, 075441 (2009)]

Finally, the method allows the inclusion of off-site (ghost) orbitals (not
centered around any specific atom), useful for example in the calculation
of the counterpoise correction for basis-set superposition errors. Bessel
functions for any radius and any excitation level can also be added any-
where to the basis set.

Range: cutoff radii of orbitals.

Strictly localized orbitals (zero beyond a cutoff radius) are used in order
to obtain sparse Hamiltonian and overlap matrices for linear scaling. One
cutoff radius per angular momentum channel has to be given for each
species.

A balanced and systematic starting point for defining all the different radii
is achieved by giving one single parameter, the energy shift, i.e., the energy
increase experienced by the orbital when confined. Allowing for system
and physical-quantity variablity, as a rule of thumb AEppo ~ 100 meV
gives typical precisions within the accuracy of current GGA functionals.
The user can, nevertheless, change the cutoff radii at will.

Shape

Within the pseudopotential framework it is important to keep the con-
sistency between the pseudopotential and the form of the pseudoatomic
orbitals in the core region. The shape of the orbitals at larger radii de-
pends on the cutoff radius (see above) and on the way the localization is
enforced.

The first proposal (and quite a standard among SIESTA users) uses
an infinite square-well potential. It was originally proposed and has
been widely and successfully used by Otto Sankey and collaborators,
for minimal bases within the ab initio tight-binding scheme, using the
Fireball program, but also for more flexible bases using the methodology
of STESTA. This scheme has the disadavantage, however, of generating
orbitals with a discontinuous derivative at r.. This discontinuity is more
pronounced for smaller r.’s and tends to disappear for long enough values
of this cutoff. It does remain, however, appreciable for sensible values of 7,
for those orbitals that would be very wide in the free atom. It is surprising
how small an effect such a kink produces in the total energy of condensed

18

systems. It is, on the other hand, a problem for forces and stresses, es-
pecially if they are calculated using a (coarse) finite three-dimensional
grid.

Another problem of this scheme is related to its defining the basis starting
from the free atoms. Free atoms can present extremely extended orbitals,
their extension being, besides problematic, of no practical use for the
calculation in condensed systems: the electrons far away from the atom
can be described by the basis functions of other atoms.

A traditional scheme to deal with this is one based on the radial scaling
of the orbitals by suitable scale factors. In addition to very basic bonding
arguments, it is soundly based on restoring the virial’s theorem for finite
bases, in the case of Coulombic potentials (all-electron calculations). The
use of pseudopotentials limits its applicability, allowing only for extremely
small deviations from unity (~ 1%) in the scale factors obtained varia-
tionally (with the exception of hydrogen that can contract up to 25%).
This possiblity is available to the user.

Another way of dealing with the above problem and that of the kink
at the same time is adding a soft confinement potential to the atomic
Hamiltonian used to generate the basis orbitals: it smoothens the kink and
contracts the orbital as suited. Two additional parameters are introduced
for the purpose, which can be defined again variationally. The confining
potential is flat (zero) in the core region, starts off at some internal radius
r; with all derivatives continuous and diverges at r. ensuring the strict
localization there. It is

Te—T4
T—T;

V(r) =V (1)
and both r; and V, can be given to STESTA together with r. in the input
(see PAO.Basis below). The kink is normally well smoothened with the
default values for soft confinement by default (PAO.SoftDefault true),
which are r; = 0.9r. and V, = 40 Ry.

Te—T

When explicitly introducing orbitals in the basis that would be empty in
the atom (e.g. polarisation orbitals) these tend to be extremely extended
if not completely unbound. The above procedure produces orbitals that
bulge as far away from the nucleus as possible, to plunge abruptly at r..
Soft confinement can be used to try to force a more reasonable shape,

but it is not ideal (for orbitals peaking in the right region the tails tend
to be far too short). Charge confinement produces very good shapes for
empty orbitals. Essentially a Z/r potential is added to the soft confined
potential above. For flexibility the charge confinement option in STESTA

is defined as
Zef)\r

Volr) = —— 2

ol =T <

where ¢ is there to avoid the singularity (default § = 0.01 Bohr), and A
allows to screen the potential if longer tails are needed. The description

on how to introduce this option can be found in the PAO.Basis entry
below.

Finally, the shape of an orbital is also changed by the ionic character of
the atom. Orbitals in cations tend to shrink, and they swell in anions.
Introducing a dQ) in the basis-generating free-atom calculations gives or-
bitals better adapted to ionic situations in the condensed systems.

More information about basis sets can be found in the proposed literature.

There are quite a number of options for the input of the basis-set and KB
projector specification, and they are all optional! By default, SIESTA
will use a DZP basis set with appropriate choices for the determina-
tion of the range, etc. Of course, the more you experiment with the
different options, the better your basis set can get. To aid in this
process we offer an auxiliary program for optimization which can be
used in particular to obtain variationally optimal basis sets (within a
chosen basis size). See Util/Optimizer for general information, and
Util/Optimizer/Examples/Basis_Optim for an example. The directory
Tutorials/Bases in the main SIESTA distribution contains some tuto-
rial material for the generation of basis sets and KB projectors.

Finally, some optimized basis sets for particular elements are available at
the SIESTA web page. Again, it is the responsability of the users to test
the transferability of the basis set to their problem under consideration.

6.3.2 Type of basis sets

PAO.BasisType (string)
The kind of basis to be generated is chosen. All are based on finite-

split

range pseudo-atomic orbitals [PAO’s of Sankey and Niklewsky, PRB
40, 3979 (1989)]. The original PAQ’s were described only for minimal
bases. SIESTA generates extended bases (multiple-(, polarization,
and diffuse orbitals) applying different schemes of choice:

- Generalization of the PAO’s: uses the excited orbitals of the
finite-range pseudo-atomic problem, both for multiple-¢ and for
polarization [see Sanchez-Portal, Artacho, and Soler, JPCM 8,
3859 (1996)]. Adequate for short-range orbitals.

- Multiple-C in the spirit of split valence, decomposing the orig-
inal PAO in several pieces of different range, either defining
more (and smaller) confining radii, or introducing Gaussians
from known bases (Huzinaga’s book).

All the remaining options give the same minimal basis. The different
options and their FDF descriptors are the following;:

split Split-valence scheme for multiple-zeta. The split is based on

different radii.

splitgauss Same as split but using gaussian functions e~(@/@i)?* The
gaussian widths «; are read instead of the scale factors (see below).
There is no cutting algorithm, so that a large enough r. should be
defined for the gaussian to have decayed sufficiently.

nodes Generalized PAQO’s.

nonodes The original PAQO’s are used, multiple-zeta is generated by
changing the scale-factors, instead of using the excited orbitals.

filteret Use the filterets as a systematic basis set. The size of the
basis set is controlled by the filter cut-off for the orbitals.

Note that, for the split and nodes cases the whole basis can be gen-
erated by STESTA with no further information required. STESTA
will use default values as defined in the following (PAO.BasisSize,
PAO.EnergyShift, and PAO.SplitNorm, see below).

6.3.3 Size of the basis set

PAO.BasisSize DZP (string)

It defines usual basis sizes. It has effect only if there is no block
PAO.Basis present.

SZ|minimal Use single-(basis.
DZ Double zeta basis, in the scheme defined by PAO.BasisType.
SZP Single-zeta basis plus polarization orbitals.

DZP|standard Like DZ plus polarization orbitals. Polarization or-

bitals are constructed from perturbation theory, and they are de-
fined so they have the minimum angular momentum [such that
there are not occupied orbitals with the same [in the valence shell
of the ground-state atomic configuration. They polarize the corre-
sponding [— 1 shell.
NOTE: the ground-state atomic configuration used internally by
SIESTA is defined in the source file Src/periodic_table.f. For
some elements (e.g., Pd), the configuration might not be the stan-
dard one.

%block PAO.BasisSizes (None) (block)

Block which allows to specify a different value of the variable
PAOQO.BasisSize for each species. For example,

%block PAO.BasisSizes

Si DZ
H DZP
0 SZPp

%endblock PAQ.BasisSizes

Write.Graphviz none|atom|orbitallatom+orbital (string)

Write out the sparsity pattern after having determined the ba-
sis size overlaps. This will generate SystemLabel.ATOM.gv or
SystemLabel.ORB.gv which both may be converted to a graph using
Graphviz’s program neato:

neato -x -Tpng siesta.ATOM.gv -o siesta_ATOM.png

The resulting graph will list each atom as i(j) where 4 is the atomic
index and j is the number of other atoms it is connected to.

6.3.5 Generation of multiple-zeta orbitals

PAO.SplitNorm 0.15 (real)

A standard to define sensible default radii for the split-valence type
of basis. It gives the amount of norm that the second-(split-off piece
has to carry. The split radius is defined accordingly. If multiple-
is used, the corresponding radii are obtained by imposing smaller
fractions of the SplitNorm (1/2, 1/4 ...) value as norm carried by the
higher zetas. It only has an effect when the block PAO.Basis is not
present or when the radii specified in that block are zero for zetas
higher than one.

PAO.SplitNormH (PAO.SplitNorm) (real)

This option is as per PAO.SplitNorm but allows a separate default
to be specified for hydrogen which typically needs larger values than
those for other elements.

PAO.NewSplitCode false (logical)

6.3.4 Range of the orbitals .) B
Enables a new, simpler way to match the multiple-zeta radii.

PAO.EnergyShift 0.02Ry (energy) If an old-style (tail+parabola) calculation is being done, perform a

A standard for orbital-confining cutoff radii. It is the excitation en-
ergy of the PAQO’s due to the confinement to a finite-range. It offers
a general procedure for defining the confining radii of the original
(first-zeta) PAO’s for all the species guaranteeing the compensation
of the basis. It only has an effect when the block PAQO.Basis is not
present or when the radii specified in that block are zero for the first
zeta.

PAO.FixSplitTable false

scan of the tail+parabola norm in the whole range of the 1st-zeta
orbital, and store that in a table. The construction of the 2nd-zeta
orbital involves simply scanning the table to find the appropriate
place. Due to the idiosyncracies of the old algorithm, the new one
is not guaranteed to produce exactly the same results, as it might
settle on a neighboring grid point for the matching.

(logical)

After the scan of the allowable split-norm values, apply a damping
function to the tail to make sure that the table goes to zero at the
radius of the first-zeta orbital.

PAO.SplitTailNorm false (logical)
Use the norm of the tail instead of the full tail+parabola norm. This
is the behavior described in the JPC paper. (But note that, for
numerical reasons, the square root of the tail norm is used in the
algorithm.) This is the preferred mode of operation for automatic
operation, as in non-supervised basis-optimization runs.

As a summary of the above options:

For complete backwards compatibility, do nothing.
To exercise the new code, set PAO.NewSplitCode.

To maintain the old split-norm heuristic, but making sure
that the program finds a solution (even if not optimal, in
the sense of producing a second-(r. very close to the first-
¢ one), set PAO.FixSplitTable (this will automatically set
PAO.NewSplitCode).

If the old heuristic is of no interest (for example, if only a
robust way of mapping split-norms to radii is needed), set
PAO.SplitTailNorm (this will set PAO.NewSplitCode auto-

matically).

PAO.EnergyCutoff 20Ry (energy)

If the multiple zetas are generated using filterets then only the fil-
terets with an energy lower than this cutoff are included. Increasing
this value leads to a richer basis set (provided the cutoff is raised
above the energy of any filteret that was previously not included)
but a more expensive calculation. It only has an effect when the
option PAO.BasisType is set to filteret.

PAO.EnergyPolCutoff 20Ry (energy)
If the multiple zetas are generated using filterets then only the fil-
terets with an energy lower than this cutoff are included for the po-
larisation functions. Increasing this value leads to a richer basis set

21

(provided the cutoff is raised above the energy of any filteret that was
previously not included) but a more expensive calculation. It only
has an effect when the option PAO.BasisType is set to filteret.

PAO.ContractionCutoff 0|0 —1 (real)

If the multiple zetas are generated using filterets then any filterets
that have a coefficient less than this threshold within the original
PAO will be contracted together to form a single filteret. Increasing
this value leads to a smaller basis set but allows the underlying basis
to have a higher kinetic energy cut-off for filtering. It only has an
effect when the option PAO.BasisType is set to filteret.

6.3.6 Soft-confinement options

PAO.SoftDefault false (logical)
If set to true then this option causes soft confinement to be the default
form of potential during orbital generation. The default potential and
inner radius are set by the commands given below.

PAO.SoftInnerRadius 0.9 (real)
For default soft confinement, the inner radius is set at a fraction of
the outer confinement radius determined by the energy shift. This
option controls the fraction of the confinement radius to be used.

PAO.SoftPotential 40 Ry (energy)
For default soft confinement, this option controls the value of the
potential used for all orbitals.

NOTE: Soft-confinement options (inner radius, prefactor) have been
traditionally used to optimize the basis set, even though formally they
are just a technical necessity to soften the decay of the orbitals at rc.
To achieve this, it might be enough to use the above global options.

6.3.7 Kleinman-Bylander projectors

%block PS.lmax (None) (block)
Block with the maximum angular momentum of the Kleinman-
Bylander projectors, lmxkb. This information is optional. If the
block is absent, or for a species which is not mentioned inside it,

SIESTA will take 1mxkb(is) = lmxo(is) + 1, where lmxo(is) is
the maximum angular momentum of the basis orbitals of species is.

%block Ps.lmax
Al _adatom 3
H 1
0 2
%endblock Ps.lmax

By default 1lmax is the maximum angular momentum plus one.

%block PS.KBprojectors (None) (block)

This block provides information about the number of Kleinman-
Bylander projectors per angular momentum, and for each species,
that will used in the calculation. This block is optional. If the block
is absent, or for species not mentioned in it, only one projector will be
used for each angular momentum. The projectors will be constructed
using the eigenfunctions of the respective pseudopotentials.

This block allows to specify the number of projector for each 1, and
also the reference energies of the wavefunctions used to build them.
The specification of the reference energies is optional. If these en-
ergies are not given, the program will use the eigenfunctions with
an increasing number of nodes (if there is not bound state with the
corresponding number of nodes, the “eigenstates" are taken to be
just functions which are made zero at very long distance of the nu-
cleus). The units for the energy can be optionally specified, if not,
the program will assumed that are given in Rydbergs. The data pro-
vided in this block must be consistent with those read from the block
PS.lmax. For example,

%block PS.KBprojectors

Si 3

2 1
-0.9 eV

0o 2
-0.5 -1.0d4 Hartree
1 2
Ga 1

-1.0 1.0d5 -6.0

%endblock PS.KBprojectors

The reading is done this way (those variables in brackets are optional,
therefore they are only read if present):

From is = 1 to nspecies
read: label(is), 1_shells(is)
From 1lsh=1 to 1_shells(is)
read: 1, nkbl(1l,is)
read: {erefKB(izeta,il,is)}, from ikb = 1 to nkbl(l,is)

When a very high energy, higher that 1000 Ry, is specified, the default
is taken instead. On the other hand, very low (negative) energies,
lower than -1000 Ry, are used to indicate that the energy derivative
of the last state must be used. For example, in the example given
above, two projectors will be used for the s pseudopotential of Si. One
generated using a reference energy of -0.5 Hartree, and the second one
using the energy derivative of this state. For the p pseudopotential of
Ga, three projectors will be used. The second one will be constructed
from an automatically generated wavefunction with one node, and the
other projectors from states at -1.0 and -6.0 Rydberg.

The analysis looking for possible ghost states is only performed when
a single projector is used. Using several projectors some attention
should be paid to the “KB cosine" (kbcos), given in the output of the
program. The KB cosine gives the value of the overlap between the
reference state and the projector generated from it. If these numbers
are very small (< 0.01, for example) for all the projectors of some
angular momentum, one can have problems related with the presence
of ghost states.

The default is one KB projector from each angular momentum, con-
structed from the nodeless eigenfunction.

KB.New.Reference.Orbitals false (logical)

If true, the routine to generate KB projectors will use slightly differ-
ent parameters for the construction of the reference orbitals involved
(Rmax=60 Bohr both for integration and normalization).

22

6.3.8 The PAO.Basis block
%block PAO.Basis

(None) (block)

Block with data to define explicitly the basis to be used. It al-
lows the definition by hand of all the parameters that are used
to construct the atomic basis. There is no need to enter infor-
mation for all the species present in the calculation. The basis
for the species not mentioned in this block will be generated auto-
matically using the parameters PAO.BasisSize, PAO.BasisType,
PAO.EnergyShift, PAO.SplitNorm (or PAO.SplitNormH),
and the soft-confinement defaults, if used (see PAO.SoftDefault).

Some parameters can be set to zero, or left out completely. In these
cases the values will be generated from the magnitudes defined above,
or from the appropriate default values. For example, the radii will
be obtained from PAO.EnergyShift or from PAO.SplitNorm if
they are zero; the scale factors will be put to 1 if they are zero or not
given in the input. An example block for a two-species calculation
(H and O) is the following (opt means optional):

{n3}, 1(1sh), nzls(lsh,is), { PolOrb(1+1) }, { NzetaPol(

{SplitNormfFlag(lsh,is)}, {SplitNormValue(lsh,is)}

{SoftConfFlag(lsh,is)}, {PrefactorSoft(lsh,is)}, {InnerRe

{FilteretFlag(lsh,is)}, {FilteretCutoff(lsh,is)}

{ChargeConfFlag(lsh,is)}, {Z(1sh,is)}, {Screen(lsh,is)},
1 to nzls(1,is)
1 to nzls(l

read: rcls(izeta,lsh,is), from izeta
read: { contrf(izeta,il,is) }, from izeta

And here is the variable description:

Label: Species label, this label determines the species index is
according to the block ChemicalSpeciesLabel

1_shells(is): Number of shells of orbitals with different an-
gular momentum for species is

type(is): Optional input. Kind of basis set generation proce-
dure for species is. Same options as PAO.BasisType
ionic_charge(is): Optional input. Net charge of species is.
This is only used for basis set generation purposes. Default
value: 0.0 (neutral atom). Note that if the pseudopotential was
generated in an ionic configuration, and no charge is specified

Label, 1_shells, type (opt), ionic_charge (opt)in PAQ.Basis, the ionic charge setting will be that of pseudopo-

n: Principal quantum number of the shell. This is an optional
input for normal atoms, however it must be specified when there
are semicore states (i.e. when states that usually are not con-

ionic_charge (op t)sidered to belong to the valence shell have been included in the

calculation)
1: Angular momentum of basis orbitals of this shell

nzls(1lsh,is): Number of “zetas” for this shell. For a filteret

%block PAO.Basis # Define Basis set

0 2 nodes 1.0 #

n=2 0 2 E 50.0 2.5 # n (opt if not using semicore levels),1,Nzeta,Sdf%@é&k@@ﬁﬁyaﬁon‘
3.50 3.50 # rc(izeta=1,Nzeta) (Bohr)
0.95 1.00 # scaleFactor (izeta=1,Nzeta) (opt)
11 P2 # 1, Nzeta, PolOrb (opt), NzetaPol (opt)
3.50 # rc(izeta=1,Nzeta) (Bohr)

H 2 # Label, 1_shells, type (opt)
025 0.2 # 1, Nzeta, Per-shell split norm parameter
5.00 0.00 # rc(izeta=1,Nzeta) (Bohr)
11Q 3. 0.2 # 1, Nzeta, Charge conf (opt): Z and screening
5.00 # rc(izeta=1,Nzeta) (Bohr)

%endblock PAO.Basis

The reading is done this way (those variables in brackets are op-
tional, therefore they are only read if present) (See the routines in
Src/basis_specs.f for detailed information):

From js 1 to nspecies

basis this number is ignored since the number is controlled by
the cutoff.

PolOrb(1+1): Optional input. If set equal to P, a shell of po-
larization functions (with angular momentum [+ 1) will be con-
structed from the first-zeta orbital of angular momentum [. De-
fault value: >’ (blank = No polarization orbitals).

read: label(is), 1_shells(is), { type(is) }, { ionic-Charge(i—s)l\lgetaPol(l+1): Optional input. Number of “zetas” for the po-

From 1lsh=1 to 1_shells(is)
read:

23

larization shell (generated automatically in a split-valence fash-
ion). For a filteret basis this number is ignored since the number

is controlled by the cutoff. Only active if Pol0Orb = P. Default
value: 1

SplitNormFlag(lsh,is): Optional input. If set equal to S, the
following number sets the split-norm parameter for that shell.

SoftConfFlag(l,is): Optional input. If set equal to E, the soft
confinement potential proposed in equation (1) of the paper by
J. Junquera et al., Phys. Rev. B 64, 235111 (2001), is used
instead of the Sankey hard-well potential.

PrefactorSoft(l,is): Optional input. Prefactor of the soft
confinement potential (V in the formula). Units in Ry. Default
value: 0 Ry.

InnerRadSoft (1,is): Optional input. Inner radius where the
soft confinement potential starts off (r; in the formula). If neg-
ative, the inner radius will be computed as the given fraction of
the PAO cutoff radius. Units in bohrs. Default value: 0 bohrs.

FilteretFlag(l,is): Optional input. If set equal to F, then
an individual filter cut-off can be specified for the shell.

FilteretCutoff (1,is): Optional input. Shell-specific value for
the filteret basis cutoff. Units in Ry. Default value: The same
as the value given by FilterCutoff.

ChargeConfFlag(1lsh,is): Optional input. If set equal to Q, the
charge confinement potential in equation (2) above is added to
the confining potential. If present it requires at least one number
after it (Z), but it can be followed by two or three numbers.

Z(1lhs,is): Optional input, needed if @ is set. Z charge in
equation (2) above for charge confinement (units of e).

Screen(lhs,is): Optional input. Yukawa screening parameter
A in equation (2) above for charge confinement (in Bohr—1!).

delta(lhs,is): Optional input. Singularity regularisation pa-
rameter § in equation (2) above for charge confinement (in
Bohr).

rcls(izeta,l,is): Cutoff radius (Bohr) of each 'zeta’ for this
shell. For the second zeta onwards, if this value is negative, the
actual rc used will be the given fraction of the first zeta’s rc.

24

- contrf (izeta,l,is): Optional input. Contraction factor of
each “zeta” for this shell. Default value: 1.0

Polarization orbitals are generated by solving the atomic problem in
the presence of a polarizing electric field. The orbitals are generated
applying perturbation theory to the first-zeta orbital of lower angular
momentum. They have the same cutoff radius as the orbitals from
which they are constructed.

Note: The perturbative method has traditionally used the '’ com-
ponent of the pseudopotential. It can be argued that it should use
the 141’ component. By default, for backwards compatibility, the
traditional method is used, but the alternative one can be activated
by setting the logical PAO.0O1dStylePolOrbs variable to false.

There is a different possibility for generating polarization orbitals:
by introducing them explicitly in the PAO.Basis block. It has to be
remembered, however, that they sometimes correspond to unbound
states of the atom, their shape depending very much on the cutoff
radius, not converging by increasing it, similarly to the multiple-zeta
orbitals generated with the nodes option. Using PAO.EnergyShift
makes no sense, and a cut off radius different from zero must be
explicitly given (the same cutoff radius as the orbitals they polarize
is usually a sensible choice).

A species with atomic number = -100 will be considered by STESTA
as a constant-pseudopotential atom, i.e., the basis functions gener-
ated will be spherical Bessel functions with the specified r.. In this
case, 7. has to be given, as EnergyShift will not calculate it.

Other negative atomic numbers will be interpreted by SIESTA as
ghosts of the corresponding positive value: the orbitals are generated
and put in position as determined by the coordinates, but neither
pseudopotential nor electrons are considered for that ghost atom.
Useful for BSSE correction.

Use: This block is optional, except when Bessel functions or semicore
states are present.

Default:
above.

Basis characteristics defined by global definitions given

6.3.9 Filtering

FilterCutoff 0eV (energy)

Kinetic energy cutoff of plane waves used to filter all the atomic ba-
sis functions, the pseudo-core densities for partial core corrections,
and the neutral-atom potentials. The basis functions (which must
be squared to obtain the valence density) are really filtered with a
cutoff reduced by an empirical factor 0.7 ~ 0.5. The FilterCut-
off should be similar or lower than the MeshCutoff to avoid the
eggboz effect on the atomic forces. However, one should not try to
converge MeshCutoff while simultaneously changing FilterCut-
off, since the latter in fact changes the used basis functions. Rather,
fix a sufficiently large FilterCutoff and converge only MeshCut-
off. If FilterCutoff is not explicitly set, its value is calculated from
FilterTol.

FilterTol 0cV (energy)

Residual kinetic-energy leaked by filtering each basis function. While
FilterCutoff sets a common reciprocal-space cutoff for all the ba-
sis functions, FilterTol sets a specific cutoff for each basis function,
much as the PAQO.EnergyShift sets their real-space cutoff. There-
fore, it is reasonable to use similar values for both parameters. The
maximum cutoff required to meet the FilterTol, among all the ba-
sis functions, is used (multiplied by the empirical factor 1/0.7% ~ 2)
to filter the pseudo-core densities and the neutral-atom potentials.
FilterTol is ignored if FilterCutoff is present in the input file. If
neither FilterCutoff nor FilterTol are present, no filtering is per-
formed. See Soler and Anglada, arXiv:0807.5030, for details of the
filtering procedure.

Warning: If the value of FilterCutoff is made too small (or Filter-
Tol too large) some of the filtered basis orbitals may be meaningless,
leading to incorrect results or even a program crash.

To be implemented: If MeshCutoff is not present in the input file,
it can be set using the maximum filtering cutoff used for the given
FilterTol (for the time being, you can use AtomSetupOnly true
to stop the program after basis generation, look at the maximum
filtering cutoff used, and set the mesh-cutoff manually in a later run.)

25

6.3.10 Saving and reading basis-set information

SIESTA (and the standalone program GEN-BASIS) always generate the
files Atomlabel.ion, where Atomlabel is the atomic label specified in block
ChemicalSpeciesLabel. Optionally, if NetCDF support is compiled
in, the programs generate NetCDF files Atomlabel.ion.nc (except for
ghost atoms). See an Appendix for information on the optional NetCDF
package.

These files can be used to read back information into SIESTA.

(logical)
If true, the basis, KB projector, and other information is read from
files Atomlabel.ion, where Atomlabel is the atomic species label spec-
ified in block ChemicalSpeciesLabel. These files can be generated
by a previous SIESTA run or (one by one) by the standalone pro-
gram Gen-basis. No pseudopotential files are necessary.

User.Basis false

User.Basis.NetCDF false (logical)
If true, the basis, KB projector, and other information is read from
NetCDF files Atomlabel.ion.nc, where Atomlabel is the atomic la-
bel specified in block ChemicalSpeciesLabel. These files can be
generated by a previous SIESTA run or by the standalone program
Gen-basis. No pseudopotential files are necessary. NetCDF support
is needed. Note that ghost atoms cannot yet be adequately treated
with this option.

6.3.11 Tools to inspect the orbitals and KB projectors

The program ioncat in Util/Gen-basis can be used to extract orbital,
KB projector, and other information contained in the .ion files. The
output can be easily plotted with a graphics program. If the option
WritelonPlotFiles is enabled, SIESTA will generate and extra set of
files that can be plotted with the gnuplot scripts in Tutorials/Bases.
The stand-alone program gen-basis sets that option by default, and the
script Tutorials/Bases/gen-basis.sh can be used to automate the pro-
cess. See also the NetCDF-based utilities in Util/PyAtom.

6.3.12 Basis optimization

There are quite a number of options for the input of the basis-set and KB
projector specification, and they are all optional! By default, SIESTA
will use a DZP basis set with appropriate choices for the determina-
tion of the range, etc. Of course, the more you experiment with the
different options, the better your basis set can get. To aid in this
process we offer an auxiliary program for optimization which can be
used in particular to obtain variationally optimal basis sets (within a
chosen basis size). SeeAaUtil/Optimizer for general information, and
Util/Optimizer/Examples/Basis_Optim for an example.

BasisPressure 0.2 GPa

SIESTA will compute and print the value of the “effective basis
enthalpy” constructed by adding a term of the form ppqs;sVorps to the
total energy. Here ppqsis is a fictitious basis pressure and V. is the
volume of the system’s orbitals. This is a useful quantity for basis
optimization (See Anglada et al.). The total basis enthalpy is also
written to the ASCII file BASIS_ENTHALPY.

(pressure)

6.3.13 Low-level options regarding the radial grid

For historical reasons, the basis-set and KB projector code in SIESTA
uses a logarithmic radial grid, which is taken from the pseudopotential
file. Any “interesting” radii have to fall on a grid point, which introduces a
certain degree of coarseness that can limit the accuracy of the results and
the faithfulness of the mapping of input parameters to actual operating
parameters. For example, the same orbital will be produced by a finite
range of PAO.EnergyShift values, and any user-defined cutoffs will not
be exactly reflected in the actual cutoffs. This is particularly trouble-
some for automatic optimization procedures (such as those implemented
in Util/Optimizer), as the engine might be confused by the extra level of
indirection. The following options can be used to fine-tune the mapping.
They are not enabled by default, as they change the numerical results
apreciably (in effect, they lead to different basis orbitals and projectors).

(logical)
By changing the a and b parameters of the logarithmic grid, a new one

Reparametrize.Pseudos false

26

with a more adequate grid-point separation can be used for the gen-
eration of basis sets and projectors. For example, by using a = 0.001
and b = 0.01, the grid point separations at r = 0 and 10 bohrs are
0.00001 and 0.01 bohrs, respectively. More points are needed to reach
r’s of the order of a hundred bohrs, but the extra computational ef-
fort is negligible. The net effect of this option (notably when coupled
to Restricted.Radial.Grid false) is a closer mapping of any user-
specified cutoff radii and of the radii implicitly resulting from other
input parameters to the actual values used by the program. (The
small grid-point separation near r=0 is still needed to avoid instabil-
ities for s channels that occurred with the previous (reparametrized)
default spacing of 0.005 bohr. This effect is not yet completely un-
derstood.)

New.A.Parameter 0.001
New setting for the pseudopotential grid’s a parameter

(real)

0.01
New setting for the pseudopotential grid’s b parameter

New.B.Parameter

(real)

Rmax.Radial.Grid 50.0 (real)

New setting for the maximum value of the radial coordinate for inte-
gration of the atomic Schrodinger equation.

If Reparametrize.Pseudos is false this will be the maximum ra-
dius in the pseudopotential file.

Restricted.Radial.Grid true (logical)

In normal operation of the basis-set and projector generation code
the various cutoff radii are restricted to falling on an odd-numbered
grid point, shifting then accordingly. This restriction can be lifted
by setting this parameter to false.

6.4 Structural information

There are many ways to give SIESTA structural information.

e Directly from the fdf file in traditional format.

e Directly from the fdf file in the newer Z-Matrix format, using a
Zmatrix block.

e From an external data file

Note that, regardless of the way in which the structure is described, the
ChemicalSpeciesLabel block is mandatory.

In the following sections we document the different structure input meth-
ods, and provide a guide to their precedence.

6.4.1 Traditional structure input in the fdf file

Firstly, the size of the cell itself should be specified, using some combi-
nation of the options LatticeConstant, LatticeParameters, and Lat-
ticeVectors, and SuperCell. If nothing is specified, SIESTA will con-
struct a cubic cell in which the atoms will reside as a cluster.

Secondly, the positions of the atoms within the cells must be specified, us-
ing either the traditional STESTA input format (a modified xyz format)
which must be described within a AtomicCoordinatesAndAtomic-
Species block.

(None) (length)
Lattice constant. This is just to define the scale of the lattice vectors.

LatticeConstant

Default value: Minimum size to include the system (assumed to be a
molecule) without intercell interactions, plus 10%.

NOTE: A LatticeConstant value, even if redundant, might be
needed for other options, such as the units of the k-points used for
band-structure calculations. This mis-feature will be corrected in
future versions.

(None) (block)
Crystallographic way of specifying the lattice vectors, by giving six
real numbers: the three vector modules, a, b, and ¢, and the three
angles « (angle between b and ¢), B, and . The three modules are
in units of LatticeConstant, the three angles are in degrees.

%block LatticeParameters

This defaults to a square cell with side-lengths equal to LatticeCon-
stant.

27

1.0 1.0 1.0 90. 90. 90.

%block LatticeVectors (None) (block)
The cell vectors are read in units of the lattice constant defined above.
They are read as a matrix CELL(ixyz,ivector), each vector being
one line.

This defaults to a square cell with side-lengths equal to LatticeCon-
stant.

1.0 0.0 0.0
0.0 1.0 0.0
0.0 0.0 1.0

If the LatticeConstant default is used, the default of LatticeVec-
tors is still diagonal but not necessarily cubic.

%block SuperCell (None) (block)

Integer 3x3 matrix defining a supercell in terms of the unit cell. Any
values larger than 1 will expand the unitcell (plus atoms) along that
lattice vector direction (if possible).

%block SuperCell

M(1,1) M(2,1) M(3,1)
M(1,2) M(2,2) M(3,2)
M(1,3) M(2,3) M(3,3)

%endblock SuperCell

and the supercell is defined as SuperCell(iz,i) = >=; CELL(iz, j) *
M (j,7). Notice that the matrix indexes are inverted: each input line
specifies one supercell vector.

Warning: SuperCell is disregarded if the geometry is read from the
XV file, which can happen inadvertently.

Use: The atomic positions must be given only for the unit cell, and
they are ’cloned’ automatically in the rest of the supercell. The
NumberOfAtoms given must also be that in a single unit cell.
However, all values in the output are given for the entire supercell.
In fact, CELL is immediately redefined as the whole supercell and the
program no longer knows the existence of an underlying unit cell.
All other input (apart from NumberOfAtoms and atomic positions),
including kgrid.MonkhorstPack must refer to the supercell (this is
a change over previous versions). Therefore, to avoid confusions, we

recommend to use SuperCell only to generate atomic positions, and
then to copy them from the output to a new input file with all the
atoms specified explicitly and with the supercell given as a normal
unit cell.

AtomicCoordinatesFormat Bohr (string)

Character string to specify the format of the atomic positions in
input. These can be expressed in four forms:

Bohr|NotScaledCartesianBohr atomic positions are given di-
rectly in Bohr, in Cartesian coordinates

Ang|NotScaledCartesianAng atomic positions are given directly
in Angstr('jm, in Cartesian coordinates

ScaledCartesian atomic positions are given in Cartesian coordi-
nates, in units of the lattice constant

Fractional|ScaledByLatticeVectors atomic positions are given re-

ferred to the lattice vectors

AtomCoorFormatOut (string)

Character string to specify the format of the atomic positions in
output.

(AtomicCoordinatesFormat)

Same possibilities as for input AtomicCoordinatesFormat.

%block AtomicCoordinatesOrigin (None) (block)

Vector specifying a rigid shift to apply to the atomic coordinates,
given in the same format and units as these. Notice that the atomic
positions (shifted or not) need not be within the cell formed by Lat-
ticeVectors, since periodic boundary conditions are always assumed.

This defaults to the origo:

0.0 0.0 0.0

%block AtomicCoordinatesAndAtomicSpecies (None) (block)

Block specifying the position and species of each atom. One line per
atom, the reading is done this way:

From ia 1 to natoms
read: xa(ix,ia), isa(dia)

28

where xa(ix,ia) is the ix coordinate of atom iai in the format
(units) specified by AtomicCoordinatesFormat, and isa(ia) is
the species index of atom ia.

NOTE: this block must be present in the fdf file. If Num-
berOfAtoms is not specified, NumberOfAtoms will be defaulted
to the number of atoms in this block.

NOTE: Zmatrix has precedence if specified.

6.4.2 Z-matrix format and constraints

The advantage of the traditional format is that it is much easier to set up
a system. However, when working on systems with constraints, there are
only a limited number of (very simple) constraints that may be expressed
within this format, and recompilation is needed for each new constraint.

For any more involved set of constraints, a full Zmatrix formulation
should be used - this offers much more control, and may be specified fully
at run time (thus not requiring recompilation) - but it is more work to
generate the input files for this form.

%block Zmatrix (None) (block)

This block provides a means for inputting the system geometry using
a Z-matrix format, as well as controlling the optimization variables.
This is particularly useful when working with molecular systems or
restricted optimizations (such as locating transition states or rigid
unit movements). The format also allows for hybrid use of Z-matrices
and Cartesian or fractional blocks, as is convenient for the study of
a molecule on a surface. As is always the case for a Z-matrix, the
responsibility falls to the user to chose a sensible relationship between
the variables to avoid triads of atoms that become linear.

Below is an example of a Z-matrix input for a water molecule:

%block Zmatrix
molecule fractional

1000 0.0 0.0 0.0000O0

2100 HO1 90.0 37.743919 1 0 0

2120 HO2 HOH 90.0 1 1 O
variables

HO1 0.956997

HO2 0.956997
HOH 104.4
%endblock Zmatrix

The sections that can be used within the Zmatrix block are as follows:

Firstly, all atomic positions must be specified within either a
“molecule” block or a “cartesian” block. Any atoms subject to
constraints more complicated than “do not change this coordinate of
this atom” must be specified within a “molecule” block.

molecule There must be one of these blocks for each independent set
of constrained atoms within the simulation.

This specifies the atoms that make up each molecule and their ge-
ometry. In addition, an option of “fractional” or “scaled” may
be passed, which indicates that distances are specified in scaled or
fractional units. In the absence of such an option, the distance
units are taken to be the value of “ZM.UnitsLength”.

A line is needed for each atom in the molecule; the format of each
line should be:

Nspecies i j k r a t ifr ifa ift

Here the values Nspecies, i, j, k, ifr, ifa, and ift are integers
and r, a, and t are double precision reals.

For most atoms, Nspecies is the species number of the atom, r
is distance to atom number i, a is the angle made by the present
atom with atoms j and i, while t is the torsional angle made by
the present atom with atoms k, j, and i. The values ifr, ifa and
ift are integer flags that indicate whether r, a, and t, respectively,
should be varied; 0 for fixed, 1 for varying.

The first three atoms in a molecule are a special case. Because there
are insufficient atoms defined to specify a distance/angle/torsion,
the values are set differently. For atom 1, r, a, and t, are the
Cartesian coordinates of the atom. For the second atom, r, a, and
t are the coordinates in spherical form of the second atom relative
to the first: first the radius, then the polar angle (angle between the
z-axis and the displacement vector) and then the azimuthal angle
(angle between the z-axis and the projection of the displacement
vector on the z-y plane). Finally, for the third atom, the numbers
take their normal form, but the torsional angle is defined relative

29

to a notional atom 1 unit in the z-direction above the atom j.
Secondly. blocks of atoms all of which are subject to the simplest
of constraints may be specified in one of the following three ways,
according to the units used to specify their coordinates:

cartesian This section specifies a block of atoms whose coordinates

are to be specified in Cartesian coordinates. Again, an option of
“fractional” or “scaled” may be added, to specify the units
used; and again, in their absence, the value of “ZM.UnitsLength”
is taken.

The format of each atom in the block will look like:
Nspecies x y z ix iy iz

Here Nspecies, ix, iy, and iz are integers and x, y, z are reals.
Nspecies is the species number of the atom being specified, while
X, y, and z are the Cartesian coordinates of the atom in whichever
units are being used. The values ix, iy and iz are integer flags that
indicate whether the x, y, and z coordinates, respectively, should
be varied or not. A value of 0 implies that the coordinate is fixed,
while 1 implies that it should be varied. NOTE: When performing
“variable cell” optimization while using a Zmatrix format for input,
the algorithm will not work if some of the coordinates of an atom
in a cartesian block are variables and others are not (i.e., ix iy
iz above must all be 0 or 1). This will be fixed in future versions
of the program.

A Zmatrix block may also contain the following, additional, sec-
tions, which are designed to make it easier to read.

constants Instead of specifying a numerical value, it is possible to

specify a symbol within the above geometry definitions. This sec-
tion allows the user to define the value of the symbol as a constant.
The format is just a symbol followed by the value:

HOH 104.4

variables Instead of specifying a numerical value, it is possible to

specify a symbol within the above geometry definitions. This sec-
tion allows the user to define the value of the symbol as a variable.
The format is just a symbol followed by the value:

HO1 0.956997

Finally, constraints must be specified in a constraints block.

constraint This sub-section allows the user to create constraints be-

tween symbols used in a Z-matrix:

Here varl and var2 are text symbols for two quantities in the Z-
matrix definition, and AandB are real numbers. The variables are

constraint

varl var2 A B

related by varl = A *x var2 + B.

An example of a Z-matrix input for a benzene molecule over a metal

surface is:

%block Zmatrix

90.0 60.0 0 0 0
CCC 90.0 0 0 O

O O O O O O o

O O O O O O o

O O O O O o o
o

o

.000000
.000000
.000000

.000000
.000000
.000000
.050000
.050000
.050000
.050000
.050000
.050000
.100000

molecule

2000 xml yml1 zm1 0 0 O
2100CC
2210CcCC

232 1CCCCCO.0
243 2CCCCCO.0
254 3CCCCCO.0
112 3 CH CCH 180.
1217 CHCCHO0.0
1 32 8CHCCH 0.0
1439 CHCCH 0.0
154 10 CH CCH 0.0
165 11 CH CCH 0.0
fractional

3 0.000000 0.000000
3 0.333333 0.000000
3 0.666666 0.000000
3 0.000000 0.500000
3 0.333333 0.500000
3 0.666666 0.500000
3 0.166667 0.250000
3 0.500000 0.250000
3 0.833333 0.250000
3 0.166667 0.750000
3 0.500000 0.750000
3 0.833333 0.750000
3 0.000000 0.000000
3 0.333333 0.000000

O OO OO OO OO OO O OO o

.100000

O OO OO OO OO OO O OO o
O OO OO OOOO0OO OO oo
O OO OO OOOO OO O OO o

3 0.666666 0.000000 0.100000 0 0 O
3 0.000000 0.500000 0.100000 0 O O
3 0.333333 0.500000 0.100000 0 0 O
3 0.666666 0.500000 0.100000 0 0 O
3 0.166667 0.250000 0.150000 0 0 O
3 0.500000 0.250000 0.150000 0 0 O
3 0.833333 0.250000 0.150000 0 0 O
3 0.166667 0.750000 0.150000 0 0 O
3 0.500000 0.750000 0.150000 0 0 O
3 0.833333 0.750000 0.150000 0 0 O
constants
yml 3.68
variables
zml 6.9032294
CC 1.417
CH 1.112
CCH 120.0
CCC 120.0
constraints

xml CC -1.0 3.903229
Y%endblock Zmatrix

Here the species 1, 2 and 3 represent H, C, and the metal of the
surface, respectively.

(Note: the above example shows the usefulness of symbolic names for
the relevant coordinates, in particular for those which are allowed to
vary. The current output options for Zmatrix information work best
when this approach is taken. By using a “fixed” symbolic Zmatrix
block and specifying the actual coordinates in a “variables” section,
one can monitor the progress of the optimization and easily recon-
struct the coordinates of intermediate steps in the original format.)

ZM.UnitsLength Bohr (string)
Parameter that specifies the units of length used during Z-matrix
input.

Specify Bohr or Ang for the corresponding unit of length.

ZM.UnitsAngle rad (string)
Parameter that specifies the units of angles used during Z-matrix
input.

30

Note that the geometry reported is the last one for which forces and
stresses were computed.

Specify rad or deg for the corresponding unit of angle.

6.4.3 Output of structural information o NEXT_ITER.UCELL.ZMATRIX:A file with the same format as

OUT.UCELL.ZMATRIX but with a possibly updated geometry.

SIESTA is able to generate several kinds of files containing structural
information (maybe too many). o The coordinates can be also accumulated in the SystemLabel .MD or

SystemLabel .MDX files depending on WriteMDHistory.

e SystemLabel.STRUCT_OUT:Siesta always produces a .STRUCT_OUT « Additionally, several optional formats are supported:

file with cell vectors in A and atomic positions in fractional coor-
dinates. This file, renamed to .STRUCT_IN can be used for crystal-
structure input. Note that the geometry reported is the last one for
which forces and stresses were computed. See UseStructFile

SystemLabel.STRUCT_NEXT_ITER:This file is always written, in the
same format as .STRUCT_OUT file. The only difference is that it
contains the structural information after it has been updated by
the relaxation or the molecular-dynamics algorithms, and thus it
could be used as input (renamed as .STRUCT_IN) for a continuation
run, in the same way as the .XV file.

See UseStructFile

SystemLabel.XV:The coordinates are always written in the .XV file,
and overriden at every step.

OUT.UCELL.ZMATRIX:This file is produced if the Zmatrix format is
being used for input. (Please note that SystemLabel is not used
as a prefix.) It contains the structural information in fdf form, with
blocks for unit-cell vectors and for Zmatrix coordinates. The Zma-
trix block is in a “canonical” form with the following characteristics:

1. No symbolic variables or constants are used.

2. The position coordinates of the first atom in each molecule

are absolute Cartesian coordinates.
3. Any coordinates in
4. There is no provision for output of constraints.

¢

5. The units used are those initially specified by the user

noted also in fdf form.

WriteCoorXmol false (logical)

If true it originates the writing of an extra file named
SystemLabel.xyz containing the final atomic coordinates in
a format directly readable by XMoL.* Coordinates come out
in Angstrom independently of what specified in AtomicCoor-
dinatesFormat and in AtomCoorFormatOut. There is a
present JAVA implementation of XMOL called JMOL.

WriteCoorCerius false (logical)

If trueit originates the writing of an extra file named
SystemLabel.xtl containing the final atomic coordinates in
a format directly readable by CERIUS.? Coordinates come out
in Fractional format (the same as ScaledByLatticeVectors)
independently of what specified in AtomicCoordinatesFor-
mat and in AtomCoorFormatQOut. If negative coordinates
are to be avoided, it has to be done from the start by shifting all
the coordinates rigidly to have them positive, by using Atom-
icCoordinatesOrigin. See the Sies2arc utility in the Util/
directory for generating . .arc files for CERIUS animation.

WriteMDXmol false (logical)
If true it causes the writing of an extra file named
SystemLabel.ANI containing all the atomic coordinates of the
simulation in a format directly readable by XMoL for anima-

cartesian’’ blocks are also absolute Cartesgigns .Coordinates come out in Angstrom independently of what

l’l(l\éiOl is under © copyright of Research Equipment Inc., dba Minnesota Supercom-

re
en%er Inc.

SCERIUS is under © copyright of Molecular Simulations Inc.

is specified in AtomicCoordinatesFormat and in Atom-
CoorFormatOut. This file is accumulative even for different
runs.

There is an alternative for animation by generating a .arc file
for CERIUS. It is through the SIES2ARC postprocessing utility
in the Util/ directory, and it requires the coordinates to be
accumulated in the output file, i.e., WriteCoorStep true.

6.4.4 Input of structural information from external files

The structural information can be also read from external files. Note that
ChemicalSpeciesLabel is mandatory in the fdf file.

MD.UseSaveXV false (logical)

Logical variable which instructs STESTA to read the atomic positions
and velocities stored in file SystemLabel.XV by a previous run.

If the file does not exist, a warning is printed but the program does
not stop. Overrides UseSaveData, but can be implicitly set by it.

UseStructFile false (logical)
Controls whether the structural information is read from an external
file of name SystemLabel.STRUCT_IN. If true, all other structural
information in the fdf file will be ignored.

The format of the file is implied by the following code:

read(*,*) ((cell(ixyz,ivec),ixyz=1,3),ivec=1,3)
read (*,*) na
do ia 1,na

read(iu,*) isa(ia), dummy, xfrac(1:3,ia)

I Cell vectors, in

! Species number

Instructs to read the Zmatrix information stored in file .ZM by a
previous run.

If the required file does not exist, a warning is printed but the pro-
gram does not stop. Overrides UseSaveData, but can be implicitly
set by it.

Warning: Note that the resulting geometry could be clobbered if an

.XV file is read after this file. It is up to the user to remove any .XV
files.

6.4.5 Input from a FIFO file

See the “Forces” option in MD.TypeOfRun. Note that Chemical-
SpeciesLabel is still mandatory in the fdf file.

6.4.6 Precedence issues in structural input

o If the “Forces” option is active, it takes precedence over everything
(it will overwrite all other input with the information it gets from
the FIFO file).

o If MD.UseSaveXV is active, it takes precedence over the options
below.

o If UseStructFile (or MD.UseStructFile) is active, it takes prece-

denc«i rcl)gg: rtélﬁsoptions below.

o For atomic coordinates, the traditional and Zmatrix formats in the
fdf file are mutually exclusive. If MD.UseSaveZM is active, the
contents of the ZM file, if found, take precedence over the Zmatrix

! Dummy numerical coif@mhation in the fdf file.
! Fractional coordinates

enddo

Warning: Note that the resulting geometry could be clobbered if an
.XV file is read after this file. It is up to the user to remove any .XV
files.

MD.UseSaveZM false (logical)

32

6.4.7 Interatomic distances

(length)
Fixes a threshold interatomic distance below which a warning mes-
sage is printed.

WarningMinimumAtomicDistance 1Bohr

MaxBondDistance 6 Bohr (length)

SIESTA prints the interatomic distances, up to a range of
MaxBondDistance, to file SystemLabel.BONDS upon first reading
the structural information, and to file SystemLabel .BONDS_FINAL af-
ter the last geometry iteration. The reference atoms are all the atoms
in the unit cell. The routine now prints the real location of the neigh-
bor atoms in space, and not, as in earlier versions, the location of the
equivalent representative in the unit cell.

6.5 k-point sampling

These are options for the k-point grid used in the SCF cycle. For other
specialized grids, see the Macroscopic Polarization and Density of States
sections.

kgrid.Cutoff 0.Bohr (length)

Parameter which determines the fineness of the k-grid used for Bril-
louin zone sampling. It is half the length of the smallest lattice vector
of the supercell required to obtain the same sampling precision with
a single k point. Ref: Moreno and Soler, PRB 45, 13891 (1992).

Use: If it is zero, only the gamma point is used. The resulting
k-grid is chosen in an optimal way, according to the method of
Moreno and Soler (using an effective supercell which is as spheri-
cal as possible, thus minimizing the number of k-points for a given
precision). The grid is displaced for even numbers of effective mesh
divisions. This parameter is not used if kgrid.MonkhorstPack is
specified. If the unit cell changes during the calculation (for example,
in a cell-optimization run, the k-point grid will change accordingly
(see ChangeKgridInMD for the case of variable-cell molecular-
dynamics runs, such as Parrinello-Rahman). This is analogous to
the changes in the real-space grid, whose fineness is specified by an
energy cutoff. If sudden changes in the number of k-points are not
desired, then the Monkhorst-Pack data block should be used instead.
In this case there will be an implicit change in the quality of the
sampling as the cell changes. Both methods should be equivalent for
a well-converged sampling.

%block kgrid.MonkhorstPack I'-point (block)

Real-space supercell, whose reciprocal unit cell is that of the k-
sampling grid, and grid displacement for each grid coordinate. Spec-
ified as an integer matrix and a real vector:

%block kgrid.MonkhorstPack
Mk(1,1) Mk(2,1) Mk(3,1) dk (1)
Mk(1,2) Mk(2,2) Mk(3,2) dk(2)
Mk(1,3) Mk(2,3) Mk(3,3) dk (3)
%endblock

where Mk(j,1) are integers and dk(i) are usually either 0.0 or 0.5
(the program will warn the user if the displacements chosen are
not optimal). The k-grid supercell is defined from Mk as in block
SuperCell above, i.e.: KgridSuperCell(ir,i) = >>; CELL(iz, j) *
ME(j,i). Note again that the matrix indexes are inverted: each in-
put line gives the decomposition of a supercell vector in terms of the
unit cell vectors.

Use: Used only if SolutionMethod diagon. The k-grid supercell
is compatible and unrelated (except for the default value, see below)
with the SuperCell specifier. Both supercells are given in terms
of the CELL specified by the LatticeVectors block. If Mk is the
identity matrix and dk is zero, only the I' point of the unit cell is
used. Overrides kgrid.Cutoff

ChangeKgridInMD false (logical)

If true, the k-point grid is recomputed at every iteration during
MD runs that potentially change the unit cell: Parrinello-Rahman,
Nose-Parrinello-Rahman, and Anneal. Regardless of the setting of
this flag, the k-point grid is always updated at every iteration of a
variable-cell optimization and after each step in a “siesta-as-server”
run.

It is defaulted to false for historical reasons. The rationale was to
avoid sudden jumps in some properties when the sampling changes,
but if the calculation is well-converged there should be no problems
if the update is enabled.

TimeReversalSymmetryForKpoints true (logical)

If true, the k-points in the BZ generated by the methods above

are paired as (k,—k) and only one member of the pair is retained.
This symmetry is valid in the absence of external magnetic fields or
spin-orbit interaction.

Note this defaults to false if Spin is non-collinear, spin-orbit or
Spin.Spiral is used.

6.5.1 OQOutput of k-point information

The coordinates of the k points used in the sampling are always stored in
the file SystemLabel.KP.

WriteKpoints false (logical)
If true it writes the coordinates of the k vectors used in the grid for
k-sampling, into the main output file.

Default depends on LongOutput.

6.6 Exchange-correlation functionals

XC.Functional LDA (string)

Exchange-correlation functional type. May be LDA (local density
approximation, equivalent to LSD), GGA (Generalized Gradient
Approximation), or VDW (van der Waals).

XC.Authors PZ (string)

Particular parametrization of the exchange-correlation functional.
Options are:

o CA (equivalent to PZ): (Spin) local density approximation
(LDA/LSD). Quantum Monte Carlo calculation of the homo-
geneous electron gas by D. M. Ceperley and B. J. Alder, Phys.
Rev. Lett. 45,566 (1980), as parametrized by J. P. Perdew and
A. Zunger, Phys. Rev B 23, 5075 (1981)

« PW92: LDA/LSD, as parametrized by J. P. Perdew and Y.
Wang, Phys. Rev B, 45, 13244 (1992)

o PWO91: Generalized gradients approximation (GGA) of Perdew
and Wang. Ref: P&W, J. Chem. Phys., 100, 1290 (1994)

34

PBE: GGA of J. P. Perdew, K. Burke and M. Ernzerhof, Phys.
Rev. Lett. 77, 3865 (1996)

revPBE: Modified GGA-PBE functional of Y. Zhang and W.
Yang, Phys. Rev. Lett. 80, 890 (1998)

RPBE: Modified GGA-PBE functional of B. Hammer, L. B.
Hansen and J. K. Norskov Phys. Rev. B 59, 7413 (1999)

WC: Modified GGA-PBE functional of Z. Wu and R. E. Cohen,
Phys. Rev. B 73, 235116 (2006)

AMO5: Modified GGA-PBE functional of R. Armiento and A.
E. Mattsson, Phys. Rev. B 72, 085108 (2005)

PBEsol: Modified GGA-PBE functional of J. P. Perdew et al,
Phys. Rev. Lett. 100, 136406 (2008)

PBEJsJrLO: GGA-PBE functional with parameters 3, u, and
k fixed by the jellium surface (Js), jellium response (Jr), and
Lieb-Oxford bound (LO) criteria, respectively, as described by
L. S. Pedroza, A. J. R. da Silva, and K. Capelle, Phys. Rev.
B 79, 201106(R) (2009), and by M. M. Odashima, K. Capelle,
and S. B. Trickey, J. Chem. Theory Comput. 5, 798 (2009)

PBEJsJrHEG: Same as PBEJsJrLO, with parameter fixed
by the Lieb-Oxford bound for the low density limit of the ho-
mogeneous electron gas (HEG)

PBEGcGxLO: Same as PBEJsJrL.O, with parameters 8 and p
fixed by the gradient expansion of correlation (Gc) and exchange
(Gx), respectively

PBEGcGxHEG: Same as previous ones, with parameters 3, u,
and x fixed by the Ge, Gx, and HEG criteria, respectively.

BLYP (equivalent to LYP): GGA with Becke exchange (A. D.
Becke, Phys. Rev. A 38, 3098 (1988)) and Lee-Yang-Parr cor-
relation (C. Lee, W. Yang, R. G. Parr, Phys. Rev. B 37, 785
(1988)), as modified by B. Miehlich, A. Savin, H. Stoll, and H.
Preuss, Chem. Phys. Lett. 157, 200 (1989). See also B. G.
Johnson, P. M. W. Gill and J. A. Pople, J. Chem. Phys. 98,
5612 (1993). (Some errors were detected in this last paper, so
not all of their expressions correspond exactly to those imple-
mented in STESTA)

o DRSLL (equivalent to DF1): van der Waals density functional
(vdW-DF) of M. Dion, H. Rydberg, E. Schréder, D. C. Lan-
greth, and B. I. Lundqvist, Phys. Rev. Lett. 92, 246401 (2004),
with the efficient implementation of G. Roman-Pérez and J. M.
Soler, Phys. Rev. Lett. 103, 096102 (2009)

o« LMKLL (equivalent to DF2): vdW-DF functional of Dion et
al (same as DRSLL) reparametrized by K. Lee, E. Murray, L.
Kong, B. I. Lundqvist and D. C. Langreth, Phys. Rev. B 82,
081101 (2010)

o KBM: vdW-DF functional of Dion et al (same as DRSLL)
with exchange modified by J. Klimes, D. R. Bowler, and A.
Michaelides, J. Phys.: Condens. Matter 22, 022201 (2010)
(optB88-vdW version)

o C09: vdW-DF functional of Dion et al (same as DRSLL) with
exchange modified by V. R. Cooper, Phys. Rev. B 81, 161104
(2010)

« BH: vdW-DF functional of Dion et al (same as DRSLL) with
exchange modified by K. Berland and P. Hyldgaard, Phys. Rev.
B 89, 035412 (2014)

e VV: vdW-DF functional of O. A. Vydrov and T. Van Voorhis,
J. Chem. Phys. 133, 244103 (2010)

%block XC.Hybrid (None) (block)

This data block allows the user to create a “cocktail” functional by
mixing the desired amounts of exchange and correlation from each of
the functionals described under XC.authors. Note that these “mixed”
functionals do not have the exact Hartree-Fock exchange which is a
key ingredient of the true “hybrid” functionals. The use of the word
“hybrid” in the label is unfortunate in this regard, and might be
deprecated in a future version.

The first line of the block must contain the number of functionals
to be mixed. On the subsequent lines the values of XC.functl and
XC.authors must be given and then the weights for the exchange and
correlation, in that order. If only one number is given then the same
weight is applied to both exchange and correlation.

The following is an example in which a 75:25 mixture of Ceperley-

Spin non-polarized

Spin.Fix false

Alder and PBE correlation is made, with an equal split of the ex-
change energy:

%block XC.hybrid
2
LDA CA 0.5 0.75
GGA PBE 0.5 0.25
%endblock XC.hybrid

6.7 Spin polarization

(string)
Choose the spin-components in the simulation.

NOTE: this flag has precedence over SpinOrbit, NonCollinear-
Spin and SpinPolarized while these older flags may still be used.

non-polarized Perform a calculation with spin-degeneracy (only one
component).

polarized Perform a calculation with collinear spin (two spin com-
ponents).

non-collinear Perform a calculation with non-collinear spin (4 spin
components), up-down and angles.
Refs: T. Oda et al, PRL, 80, 3622 (1998); V. M. Garcia-Suérez et
al, Eur. Phys. Jour. B 40, 371 (2004); V. M. Garcia-Sudrez et al,
Journal of Phys: Cond. Matt 16, 5453 (2004).

spin-orbit Perform a calculation with spin-orbit coupling. This re-
quires the pseudopotentials to be relativistic.

See Sect. 6.8.

SIESTA can read a .DM with different spin structure by adapting the
information to the currently selected spin multiplicity, averaging or
splitting the spin components equally, as needed. This may be used
to greatly increase convergence.

Certain options may not be used together with specific parallelization
routines. For instance only a spin-polarized calculation may use the
Diag.ParallelOverK option.

(logical)

If true, the calculation is done with a fixed value of the spin of the
system, defined by variable Spin.Total. This option can only be
used for collinear spin polarized calculations.

Spin.Total 0 (real)

Value of the imposed total spin polarization of the system (in units
of the electron spin, 1/2). It is only used if Spin.Fix true.

SingleExcitation false (logical)
If true, SIESTA calculates a very rough approximation to the lowest
excited state by swapping the populations of the HOMO and the
LUMO. If there is no spin polarisation, it is half swap only. It is

done for the first spin component (up) and first k vector.

6.8 Spin—Orbit coupling

SIESTA includes the posibility to perform fully relativistic calculations
by means of the inclusion in the total Hamiltonian not only the Darwin
and velocity correction terms (Scalar-Relativistic calculations), but also
the spin-orbit (SO) contribution. The implementation is based on the
on-site SO approximation, where only the intra-SO contribution of each
atom is taken into account. See Spin on how to turn on the spin-orbit
coupling.

The current implementation in STESTA has been implemented by Dr.
Ramén Cuadrado based on the original on-site SO formalism and imple-
mentation developed by Prof. Jaime Ferrer, et al (L Ferndndez—Seivane,
M Oliveira, S Sanvito, and J Ferrer, Journal of Physics: Condensed Mat-
ter, 2006 vol. 18 pp. 7999; L. Fernandez—Seivane and Jaime Ferrer, Phys.
Rev. Lett. 99, 2007, 183401).

The inclusion of the SO term in the Hamiltonian (and in the Density
Matrix) will involve the increase of non-zero elements in their off-diagonal
parts, i.e., for some pu orbitals, HZ (DM9S') [, 0'=1,] will be 0. This
is mainly due to the fact that the L - S operator will promote the mixing
between different spin-up/down components. The terms responsible of
this matrices expansion are the exchange-correlation potential and the SO.
The remaining terms such as the kinetic energy or Hartree contribution
do not depend of the spin orientations and hence will be only added to

36

the total Hamiltonian (and DM) to their diagonal parts.

The current SO formalism enables the possibility of several types of cal-
culations:

o Selfconsistent calculations for gamma point as well as for bulks (Not
yet implemented for optimizations).

Magnetic Anisotropy Energy (MAE) can be easily calculated. From
first principles calculations, MAE is obtained after subtract the total
selfconsistent energy in two different orientations, usually the total
energy associated with easy axis from the hard axis. In SIESTA it is
possible to perform several self-consistent calculations for different
magnetization orientations using the specific block DM.InitSpin
in the fdf file. In doing so one will be able to include the initial
orientation angles of the magnetization for each atom, as well as an
initial value of their net magnetic moments.

By means of Mulliken analysis, after the self-consistent procedure,
local spin and orbital moments can be calculated by means of the
flag WriteOrbMom.

Note: Due to the small SO energy value contribution to the total energy,
the level of precision requiered to perform a proper fully relativistic calcu-
lation during the selfconsistent process is quite demanding. The following
values must be carefully converged and checked for each specific system
to assure that the results are accurate enough: SCF.H.Tolerance dur-
ing the selfconsistency (typically <10~°eV), ElectronicTemperature,
k-point sampling and high values of MeshCutoff (specifically for ex-
tended solids). In general, one can say that a good calculation will have
high number of k—points, low ElectronicTemperature, extremely small
SCF.H.Tolerance and high values of MeshCutoff. We encourage the
user to test carefully these options for each system. An additional point to
take into account when the spin—orbit contribution is included is the mix-
ing scheme employed. You are encouraged to use SCF.Mix hamiltonian
instead of the density matrix, due to the fact that the convergence speed
increases considerably for the first case. In addition, the pseudopotentials
have to be well generated and tested for each specific system and they
have to be generated in their fully relativistic form and use the non-linear
core corrections.

Spin.OrbitStrength 1.0 (real)

It allows to vary the strength of the spin—orbit interaction from zero
to any positive value, including the physical value. This flag is only
active when SpinOrbit is set to true.

WriteOrbMom false (logical)

If true, a table is provided in the main output file, which includes an
estimation of the vector spin and orbital magnetic moments, in units
of the Bohr magneton, projected onto each orbital and also onto
each atom. The estimation for the orbital moments is based on a
two-center approximation, and makes use of the Mulliken population
analysis.

6.9 The self-consistent-field loop

IMPORTANT NOTE: Convergence of the Kohn-Sham energy
and forces

In versions prior to 4.0 of the program, the Kohn-Sham energy was com-
puted using the “in” DM. The typical DM used as input for the calculation
of H was not directly computed from a set of wave-functions (it was ei-
ther the product of mixing or of the initialization from atomic values).
In this case, the “kinetic energy” term in the total energy computed in
the way stated in the Siesta paper had an error which decreased with the
approach to self-consistency, but was non-zero. The net result was that
the Kohn-Sham energy converged more slowly than the “Harris” energy
(which is correctly computed).

When mixing H (see below under “Mixing Options”), the KS energy is in
effect computed from DM(out), so this error vanishes.

As a related issue, the forces and stress computed after SCF convergence
were calculated using the DM coming out of the cycle, which by default
was the product of a final mixing. This also introduced errors which grew
with the degree of non-selfconsistency.

The current version introduces several changes:

¢ When mixing the DM, the Kohn-Sham energy may be corrected to
make it variational. This involves an extra call to dhscf (although

37

with neither forces nor matrix elements being calculated, i.e. only
calls to rhoofd, poison, and cellxc), and is turned on by the option
SCF.Want.Variational. EKS.

The program now prints a new column labeled “dHmax” for the self-
consistent cycle. The value represents the maximum absolute value
of the changes in the entries of H, but its actual meaning depends
on whether DM or H mixing is in effect: if mixing the DM, dHmax
refers to the change in H(in) with respect to the previous step; if
mixing H, dHmax refers to H(out)-H(in) in the previous(?) step.

When achieving convergence, the loop might be exited without a fur-
ther mixing of the DM, thus preserving DM (out) for further process-
ing (including the calculation of forces and the analysis of the elec-
tronic structure) (see the SCF.MixA fterConvergence option).

It remains to be seen whether the forces, being computed “right”
on the basis of DM(out), exhibit somehow better convergence as
a function of the scf step. In order to gain some more data and
heuristics on this we have implemented a force-monitoring option,
activated by setting to true the variable SCF.MonitorForces.
The program will then print the maximum absolute value of the
change in forces from one step to the next. Other statistics could
be implemented.

While the (mixed) DM is saved at every SCF step, as was standard
practice, the final DM(out) overwrites the .DM file at the end of
the SCF cycle. Thus it is still possible to use a “mixed” DM for
restarting an interrupted loop, but a “good” DM will be used for
any other post-processing.

6.9.1 Harris functional and basic options

Harris.Functional false (logical)
Logical variable to choose between self-consistent Kohn-Sham func-
tional or non self-consistent Harris functional to calculate energies

and forces.

o false: Fully self-consistent Kohn-Sham functional.

e true: Non self consistent Harris functional. Cheap but pretty

crude for some systems. The forces are computed within the
Harris functional in the first SCF step. Only implemented for
LDA in the Perdew-Zunger parametrization. It really only ap-
plies to starting densities which are superpositions of atomic
charge densities.
When this option is choosen, the values of DM.UseSaveDM,
SCF.MustConverge and SCF.Mix.First are automatically
set falseand MaxSCFIterations is set to 1, no matter what-
ever other specification are in the INPUT file.

MinSCFIterations 0

Minimum number of SCF iterations per time step. In MD simulations
this can with benefit be set to 3.

(integer)

MaxSCFIterations 50 (integer)
Maximum number of SCF iterations per time step.
SCF.MustConverge false (logical)

Defines the behaviour if convergence is not reached in the maximum
number of SCF iterations. The default is to update the forces, per-
form an MD or geometry optimisation step and carry on. When set
to true the calculation will stop on the first SCF convergence failure.

6.9.2 Mixing options

Whether a calculation reaches self-consistency in a moderate number of
steps depends strongly on the mixing parameters used. The available
mixing options should be carefully tested for a given calculation type. This
search for optimal parameters can repay itself handsomely by potentially
saving many self-consistency steps in production runs.

SCF.Mix Hamiltonian|density|charge (string)
Control what physical quantity to mix in the self-consistent cycle.

The default is mixing the Hamiltonian, which may typically perform
better than density matrix mixing.

Hamiltonian Mix the Hamiltonian matrix (default).

38

density Mix the density matrix.

charge Mix the real-space charge density. Note this is an experimen-
tal feature.

NOTE: Real-space charge density does not follow the regular options
that adhere to density-matrix or Hamiltonian mixing.

SCF.Mix.Spin all|spinor|sum|sum+-diff (string)

Controls how the mixing is performed when carrying out spin-
polarized calculations.

all Use all spin-components in the mixing
spinor Estimate mixing coefficients using the spinor components

sum Estimate mixing coefficients using the sum of the spinor compo-
nents

sum-+diff Estimate mixing coefficients using the sum and the differ-
ence between the spinor components

NOTE: this option only influences density-matrix (p) or Hamilto-
nian (H) mixing when using anything but the linear mixing scheme.
And it does not influence not charge (p) mixing.

SCF.Mix.First true (logical)

Whether the first SCF should be mixed or it uses the output as input
in the next SCF step. It is generally advised to set this to true, at
least when restarting calculations.

In the following the density matrix (p) will be used in the equations, while
for Hamiltonian mixing, p, should be replaced by the Hamiltonian matrix.
Also we define R[i] = pi,, — p!, and AR[i] = R[i] — R[i — 1].

SCF.Mixer.Method Pulay|Broyden|Linear

Choose the mixing algorithm between different methods.
method may have different variants, see SCF.Mixer.Variant.

(string)
Each

Linear A simple linear extrapolation of the input matrix as

n+1

Pin = pﬁl—i_wR[n]

Pulay Using the Pulay mixing method corresponds using the [4] vari-
ant. It relies on the previous N steps and uses those for estimating
an optimal input pﬁfl for the following iteration. The equation
can be written as

n+1

N-1
Pt =ph+GRIJ+ Y (R[] + G ARI]),

i=n—N-+1

(4)

where G is the damping factor of the Pulay mixing (also known as
the mixing weight). The values a; are calculated using this formula

N-1

a; = — Y A (AR[]|R[N]), (5)
j=1

In STESTA G is a constant, and not a matrix.

NOTE: Pulay mixing is a special case of Broyden mixing, see the
Broyden method.

Broyden The Broyden mixing is mixing method relying on the pre-
vious N steps in the history for calculating an optimum input p™*!

mn
for the following iteration. The equation can be written as

N—-1 N—-1
S Y wiwje;Bi;(R[i+G AR,

i=n—N+1j=n—N+1
(6)

where G is the damping factor (also known as the mixing weight).
The values weights may be expressed by

n+41

P = pl+ G Rln] -

wi=1 ,fori>0 (7)

= (AR[1]| R[n]), (8)
By = (Wil + A)_le (9)
Ay = wiw; (AR[i]| AR[j]). (10)

It should be noted that w; for ¢ > 0 may be chosen arbitrarily.
Comparing with the Pulay mixing scheme it is obvious that Broy-
den and Pulay are equivalent for a suitable set of parameters.

39

SCF.Mixer.Variant original (string)

Choose the variant of the mixing method.

Pulay This is implemented in two variants:

original|kresse The original® Pulay mixing scheme, as imple-
mented in [4].

GR The “guaranteed-reduction” variant of Pulay, [2]. This variant
has a special convergence path. It interchanges between linear
and Pulay mixing thus using the exact gradient at each pi}.
For relatively simple systems this may be advantageous to use.
However, for complex systems it may be worse until it reaches a
convergence basin.

To obtain the original guaranteed-reduction variant one should
set SCF.Mixer.<>.weight.linear to 1.

SCF.Mixer.Weight 0.25 (real)

The mixing weight used to mix the quantity. In the linear mixing
case this refers to

pin ' = P+ wR[n). (11)

For details regarding the other methods please see
SCF.Mixer.Method.

SCF.Mixer.History 2 (integer)

Number of previous SCF steps used in estimating the following input.
Increasing this number, typically, increases stability and a number of
around 6 or above may be advised.

SCF.Mixer.Kick 0 (integer)

After every N SCF steps a linear mix is inserted to kick the SCF
cycle out of a possible local minimum.
The mixing weight for this linear kick is determined by

SCF.Mixer.Kick.Weight.

SCF.Mixer.Kick.Weight (SCF.Mixer.Weight)
The mixing weight for the linear kick (if used).

(real)

5As such the “original” version is a variant it-self. But this is more stable in the far

majority of cases.

SCF.Mixer.Restart 0 (integer)

When using advanced mixers (Pulay/Broyden) the mixing scheme
may periodically restart the history. This may greatly improve the
convergence path as local constraints in the minimization process
are periodically removed. This method has similarity to the method
proposed in [I] and is a special case of the SCF.Mixer.Kick method.

Please see SCF.Mixer.Restart.Save which is advised to be set

simultaneously.

SCF.Mixer.Restart.Save 1 (integer)
When restarting the history of saved SCF steps one may choose
to save a subset of the latest history steps. When using

SCF.Mixer.Restart it is encouraged to also save a couple of pre-
vious history steps.

SCF.Mixer.Linear.After -1 (integer)
After reaching convergence one may run additional SCF cycles using
a linear mixing scheme. If this has a value > 0 STESTA will perform
linear mixing after it has converged using the regular mixing method
(SCF.Mixer.Method).
The mixing weight for this linear mixing is controlled by
SCF.Mixer.Linear.After. Weight.

SCF.Mixer.Linear.After.Weight (SCF.Mixer.Weight) (real)
After reaching convergence one may run additional SCF cycles using
a linear mixing scheme. If this has a value > 0 STESTA will perform
linear mixing after it has converged using the regular mixing method
(SCF.Mixer.Method).
The mixing weight for this linear mixing is controlled by
SCF.Mixer.Linear.After. Weight.

In conjunction with the above simple settings controlling the SCF cycle
SIESTA employs a very configurable mixing scheme. In essence one
may switch mixing methods, arbitrarily, during the SCF cycle via control
commands. This can greatly speed up convergence.

%block SCF.Mixers (None) (block)
Each line in this block defines a separate mixer that is defined in a

40

subsequent SCF.Mixer.<> block.
The first line is the initial mixer used.
See the following options for controlling individual mixing methods.

NOTE: If this block is defined you must define all mixing parameters
individually.

%block SCF.Mixer.<> (None) (block)

This block controls the mixer named <>.

method Define the method for the mixer, see SCF.Mixer.Method
for possible values.

variant Define the variant of the method, see SCF.Mixer.Variant
for possible values.

weight|w Define the mixing weight for the mixing scheme, see
SCF.Mixer.Weight.

history Define number of previous history steps used in the mini-
mization process, see SCF.Mixer.History.

weight.linear|w.linear Define the linear mixing weight for the mix-
ing scheme. This only has meaning for Pulay or Broyden mixing.
It defines the initial linear mixing weight.
To obtain the original Pulay Guarenteed-Reduction variant one
should set this to 1.

restart Define the periodic restart of the saved history, see
SCF.Mixer.Restart.

restart.save Define number of latest history steps retained when
restarting the history, see SCF.Mixer.Restart.Save.

iterations Define the maximum number of iterations this mixer
should run before changing to another mixing method.

NOTE: this must be used in conjunction with the next setting.

next <> Specify the name of the next mixing scheme after having
conducted iterations SCF cycles using this mixing method.

next.conv <> If SCF convergence is reached using this mixer,
switch to the mixing scheme via <>. Then proceed with the

SCF cycle.

next.p If the relative difference between the latest two residuals is
below this quantity, the mixer will switch to the method given in
next. Thus if

(R R[]) = (Rli — 1| R[i — 1])
(Rl = 1| R[i —1])

< next.p (12)

is fulfilled it will skip to the next mixer.

restart.p If the relative difference between the latest two residuals is
below this quantity, the mixer will restart the history. Thus if

(R[]I R[) — (Rl = 1] R[i = 1])
(R[i = 1J|R[i —1])

< restart.p (13)

is fulfilled it will reset the history.

The options covered now may be exemplified in these examples. If the
input file contains:

SCF .Mixer.Method pulay

SCF .Mixer.Weight 0.05
SCF.Mixer.History 10
SCF.Mixer.Restart 25
SCF.Mixer.Restart.Save 4
SCF.Mixer.Linear.After 0
SCF.Mixer.Linear.After.Weight 0.1

This may be equivalently setup using the more advanced input blocks:

%block SCF.Mixers
init
final

%endblock

%block SCF.Mixer.init
method pulay
weight 0.05
history 10
restart 25
restart.save 4

next.conv final
%endblock

%block SCF.Mixer.final
method linear
weight 0.1

%endblock

This advanced setup may be used to change mixers during the SCF to
change certain parameters of the mixing method, or fully change the
method for mixing. For instance it may be advantageous to increase the
mixing weight once a certain degree of self-consistency has been reached.
In the following example we change the mixing method to a different
scheme by increasing the weight and decreasing the history steps:

%block SCF.Mixers
init
final

%endblock

%block SCF.Mixer.init
method pulay
weight 0.05
history 10
next final
Switch when the relative residual goes below 5%
next.p 0.05
%endblock

%block SCF.Mixer.final
method pulay
weight 0.1
history 6

%endblock

In essence, very complicated schemes of convergence may be created using
the block’s input.

The following options refer to the global treatment of how/when mixing
should be performed.

Compat.Pre-v4-DM-H false (logical)

This controls the default values of SCF.Mix.AfterConvergence,
SCF.RecomputeHA fterScf and SCF.Mix.First.

In versions prior to v4 the two former options where defaulted to
true while the latter option was defaulted to false.

SCF.Mix.AfterConvergence false (logical)

Indicate whether mixing is done in the last SCF cycle (after con-
vergence has been achieved) or not. Not mixing after convergence
improves the quality of the final Kohn-Sham energy and of the forces
when mixing the DM.

NOTE: see Compat.Pre-v4-DM-H.

SCF.RecomputeHAfterSCF false (logical)

Indicate whether the Hamiltonian is updated after the scf cycle, while
computing the final energy, forces, and stresses. Not recomputing
H makes further analysis tasks (such as the computation of band
structures) more consistent, as they will be able to use the same H
used to generate the last density matrix.

NOTE: see Compat.Pre-v4-DM-H.

6.9.3 Mixing of the Charge Density

See SCF.Mix on how to enable charge density mixing. If charge den-
sity mixing is enabled the fourier components of the charge density are
mixed, as done in some plane-wave codes. (See for example Kresse and
Furthmiiller, Comp. Mat. Sci. 6, 15-50 (1996), KF in what follows.)

The charge mixing is implemented roughly as follows:

e The charge density computed in dhscf is fourier-transformed and
stored in a new module. This is done both for “p(G)(in)” and
“p(G)(out)” (the “out” charge is computed during the extra call to
dhscf for correction of the variational character of the Kohn-Sham

energy)

The “in” and “out” charges are mixed (see below), and the resulting
“in” fourier components are used by dhscf in successive iterations
to reconstruct the charge density.

42

e The new arrays needed and the processing of most new options is
done in the new module m_ rhog.F90. The fourier-transforms are
carried out by code in rhofft.F.

o Following standard practice, two options for mixing are offered:

— A simple Kerker mixing, with an optional Thomas-Fermi
wavevector to damp the contributions for small G’s. The over-
all mixing weight is the same as for other kinds of mixing, read
from DM.MixingWeight.

A DIIS (Pulay) procedure that takes into account a sub-set of
the G vectors (those within a smaller cutoff). Optionally, the
scalar product used for the construction of the DIIS matrix
from the residuals uses a weight factor.

The DIIS extrapolation is followed by a Kerker mixing step.

The code is m_ diis.F90. The DIIS history is kept in a circu-
lar stack, implemented using the new framework for reference-
counted types. This might be overkill for this particular use,
and there are a few rough edges, but it works well.

The default convergence criteria remains based on the differences in the
density matrix, but in this case the differences are from step to step,
not the more fundamental DM_out-DM_in. Perhaps some other criterion
should be made the default (max |Arho(G)|, convergence of the free-

energy...)

Note that with charge mixing the Harris energy as it is currently computed
in Siesta loses its meaning, since there is no DM_in. The program prints
zeroes in the Harris energy field.

Note that the KS energy is correctly computed throughout the scf cycle,
as there is an extra step for the calculation of the charge stemming from
DM_out, which also updates the energies. Forces and final energies are
correctly computed with the final DM_out, regardless of the setting of the
option for mixing after scf convergence.

Initial tests suggest that charge mixing has some desirable properties and
could be a drop-in replacement for density-matrix mixing, but many more
tests are needed to calibrate its efficiency for different kinds of systems,
and the heuristics for the (perhaps too many) parameters:

SCF.Kerker.q0sq ORy (energy)

Determines the parameter g2 featuring in the Kerker preconditioning,
which is always performed on all components of p(G), even those
treated with the DIIS scheme.

SCF.RhoGMixingCutoff 9Ry (energy)

Determines the sub-set of G vectors which will undergo the DIIS
procedure. Only those with kinetic energies below this cutoff will be
considered. The optimal extrapolation of the p(G) elements will be
replaced in the fourier series before performing the Kerker mixing.

SCF.RhoG.DIIS.Depth 0 (integer)

Determines the maximum number of previous steps considered in the
DIIS procedure.

NOTE: The information from the first scf step is not included in the DIIS
history. There is no provision yet for any other kind of “kick-starting”
procedure. The logic is in m_ rhog (rhog_mixing routine).

SCF.RhoG.Metric.Preconditioner.Cutoff (None) (energy)

Determines the value of ¢7 in the weighing of the different G compo-
nents in the scalar products among residuals in the DIIS procedure.
Following the KF ansatz, this parameter is chosen so that the smallest
(non-zero) G has a weight 20 times larger than that of the smallest
G vector in the DIIS set.

The default is the result of the KF prescription.

SCF.DebugRhoGMixing false (logical)

Controls the level of debugging output in the mixing procedure (ba-
sically whether the first few stars worth of Fourier components are
printed). Note that this feature will only display the components in
the master node.

Debug.DIIS false (logical)

Controls the level of debugging output in the DIIS procedure. If set,
the program prints the DIIS matrix and the extrapolation coefficients.

SCF.MixCharge.SCF1 false (logical)
Logical variable to indicate whether or not the charge is mixed in

43

the first SCF cycle. Anecdotal evidence indicates that it might be
advantageous, at least for calculations started from scratch, to avoid
that first mixing, and retain the “out” charge density as “in” for the
next step.

6.9.4 Initialization of the density-matrix

NOTE: The conditions and options for density-matrix re-use are quite
varied and not completely orthogonal at this point. For further informa-
tion, see routine Src/m_new_dm.F. What follows is a summary.

The Density matrix can be:

1. Synthesized directly from atomic occupations.

(See the options below for spin considerations)
2. Read from a .DM file (if the appropriate options are set)
3. Extrapolated from previous geometry steps

(this includes as a special case the re-use of the DM

of the previous geometry iteration)

In cases 2 and 3, the structure of the read or extrapolated DM
is automatically adjusted to the current sparsity pattern.

In what follows, "Initialization" of the DM means that the DM is
either read from file (if available) or synthesized from atomic
data. This is confusing, and better terminology should be used.
Special cases:
Harris functional: The matrix is always initialized
Force calculation: The DM should be written to disk
at the time of the "no displacement"
calculation and read from file at

every subsequent step.

Variable-cell calculation:

DM.FormattedInput false (logical)
If the auxiliary cell changes, the DM is forced to be [nstructs to use formatted files for reading the density matrix.
synthesized (conceivably one could rescue some important
information from an old DM, but it is too much troul?M.FormattedOutput false (logical)
for now). NOTE that this is a change in policy with rebpdtucts to use formatted files for writing the density matrix.
to previous versions of the program, in which a (blind?) | .)
re-use was allowed, except if ’RelnitialiseDM’ was ’]%MéI’I}ItSpm'AF false (logical)
Now ’RelnitialiseDM’ is ’true’ by default. Setting it Hodefines the initial spin density for a spin polarized calculation. The

DM.UseSaveDM false

DM.FormattedFiles

’false’ is not recommended.

In all other cases (including "server operation"),
default is to allow DM re-use (with possible extrapolalfidabse the initial spin-configuration is a ferromagnetic order (all

from previous geometry steps.

For "CG" calculations, the default is not to extrapo%g
DM (unless requested by setting ’DM.AllowExtrapolatioO

"true"). The previous step’s DM is reused.

n

spin density is initially constructed with the maximum possible spin
polarization for each atom in its atomic configuration. This variable

thedefines the relative orientation of the atomic spins:

spins up). If true all odd atoms are initialized to spin-up, all even
atoms are initialized to spin-down.

(block)

Define the initial spin density for a spin polarized calculation atom
by atom. In the block there is one line per atom to be spin-polarized,

te th
bf(%%keDM.InitSpin (None)

The fdf variables ’DM.AllowReuse’ and ’DM.AllowExtrapoi@iifdhing the atom index (integer, ordinal in the block Atom-

can be used to turn off DM re-use and extrapolation.

(logical)
Instructs to read the density matrix stored in file SystemLabel..DM
by a previous run.

SIESTA will continue even if .DM is not found.

NOTE: that if the spin settings has changed STESTA allows reading
a .DM from a similar calculation with different Spin option. This
may be advantageous when going from non-polarized calculations to
polarized, and beyond, see Spin for details.

(logical)
Setting this alters the default for DM.FormattedInput and
DM.FormattedOutput. Instructs to use formatted files for read-
ing and writing the density matrix. In this case, the files are labelled
SystemLabel .DMF.

Only usable if one has problems transferring files from one computer
to another.

false

44

icCoordinatesAndAtomicSpecies) and the desired initial spin-
polarization (real, positive for spin up, negative for spin down). A
value larger than possible will be reduced to the maximum possible
polarization, keeping its sign. Maximum polarization can also be
given by introducing the symbol + or - instead of the polarization
value. There is no need to include a line for every atom, only for
those to be polarized. The atoms not contemplated in the block will
be given non-polarized initialization.

For non-collinear spin, the spin direction may be specified for each
atom by the polar angle 6§ and the azimuthal angle ¢ (using the
physics ISO convention), given as the last two arguments in degrees.
If not specified, § = 0 is assumed (z-polarized). Spin must be set to
use non-collinear or spin-orbit for the directions to have effect.

Example:

%block DM.InitSpin
5 -1. 90. 0.
3 + 45. -90.
7 -

hendblock DM.InitSpin

Atom index, spin, theta, phi (deg)

In the above example, atom 5 is polarized in the z-direction.

If this block is defined, but empty, all atoms are not polarized. This
block has precedence over DM.InitSpinAF.

DM.AllowReuse true (logical)

Controls whether density matrix information from previous geometry
iterations is re-used to start the new geometry’s SCF cycle.

DM.AllowExtrapolation true (logical)
Controls whether the density matrix information from several previ-
ous geometry iterations is extrapolated to start the new geometry’s
SCF cycle. This feature is useful for molecular dynamics simulations
and possibly also for geometry relaxations. The number of geometry
steps saved is controlled by the variable DM.History.Depth.

This is default true for molecular-dynamics simulations, but false,
for now, for geometry-relaxations (pending further tests which users
are kindly requested to perform).

DM.History.Depth 1 (integer)

Sets the number of geometry steps for which density-matrix informa-
tion is saved for extrapolation.

6.9.5 Initialization of the SCF cycle with charge densities

SCF.Read.Charge.NetCDF false (logical)

Instructs STESTA to read the charge density stored in the netCDF
file Rho.IN.grid.nc. This feature allows the easier re-use of
electronic-structure information from a previous run. It is not nec-
essary that the basis sets are “similar” (a requirement if density-
matrices are to be read in).

NOTE: this is an experimental feature. Until robust checks are
implemented, care must be taken to make sure that the FFT grids
in the .grid.nc file and in STESTA are the same.

SCF.Read.Deformation.Charge.NetCDF false (logical)

Instructs Siesta to read the deformation charge density stored in the
netCDF file DeltaRho.IN.grid.nc. This feature allows the easier re-
use of electronic-structure information from a previous run. It is not

necessary that the basis sets are “similar” (a requirement if density-
matrices are to be read in). The deformation charge is particularly
useful to give a good starting point for slightly different geometries.
NOTE: this is an experimental feature. Until robust checks are
implemented, care must be taken to make sure that the FFT grids
in the .grid.nc file and in Siesta are the same.

6.9.6 Output of density matrix and Hamiltonian

Performance Note: For large-scale calculations, writing the DM at
every scf step can have a severe impact on performance. The sparse-
matrix I/O is undergoing a re-design, to facilitate the analysis of data
and to increase the efficiency.

Use.Blocked.WriteMat false (logical)

By using blocks of orbitals (according to the underlying default block-
cyclic distribution), the sparse-matrix I/O can be speeded-up signif-
icantly, both by saving MPI communication and by reducing the
number of file accesses. This is essential for large systems, for which
the I/O could take a significant fraction of the total computation
time.

To enable this “blocked format” (recommended for large-scale calcu-
lations) use the option Use.Blocked.WriteMat true. Note that it
is off by default.

The new format is not backwards compatible. A converter program
(Util/DensityMatrix/dmUnblock.F90) has been written to post-
process those files intended for further analysis or re-use in Siesta.
This is the best option for now, since it allows liberal checkpointing
with a much smaller time consumption, and only incurs costs when
re-using or analyzing files.

Note that TRANSIESTA will continue to produce SystemLabel.DM
files, in the old format (See save_density matrix.F)

To test the new features, the option S.Only true can be used. It
will produce three files: a standard one, another one with optimized
MPI communications, and a third, blocked one.

Write. DM true (logical)

45

Control the creation of the current iterations density matrix to a file The DM.nc and standard DM file formats can be converted at will
for restart purposes and post-processing. If false nothing will be with the programs in Util/DensityMatrix directory. Note that the
written. DM values in the DM.nc file are in single precision.

If Use.Blocked.WriteMat is false the SystemLabel.DM file will . .
be written. Otherwise these density matrix files will be created; Write. DMHS.NetCDF true (logical)

DM MIXED.blocked and DM OUT.blocked which are the mixed and If true, the input density matrix, Hamiltonian, and output density
the_ diagonalization output _respectively matrix, are stored in a netCDF file named DMHS.nc. The file also
, .

contains the overlap matrix S.

Write.DM.end.of.cycle (Write.DM) (logical) The file is overwritten at every SCF step. Use the
Equivalent to Write.DM, but will only write at the end of each SCF Write. DMHS.History.NetCDF option if a complete history is de-
loop. sired.

NOTE: the file generated depends on . . .
SCF.MixA fterConvergence. Write.DM.History.NetCDF false (logical)
If true, a series of netCDF files with names of the form DM-NNNN.nc

Write.H false (logical) is created to hold the complete history of the density matrix (after
Whether restart Hamiltonians should be written (not intrinsically mixing). (See also Write.DM.NetCDF). Each file corresponds to
supported in 4.1). a geometry step.

If true these files will be created; H_MIXED or H_DMGEN which is the Write.DMHS.History.NetCDF false (logical)

mixed or the generated Hamiltonian from the current density matrix,
respectively. If Use.Blocked.WriteMat the just mentioned files
will have the additional suffix .blocked.

If true, a series of netCDF files with names of the form
DMHS-NNNN.nc is created to hold the complete history of the in-
put and output density matrix, and the Hamiltonian. (See also

Write.H.end.of.cycle (Write.H) (logical) Write. DMHS.NetCDF'). Each file corresponds to a geometry step.
Equivalent to Write.H, but will only write at the end of each SCF The overlap matrix is stored only once per SCF cycle.
loop. Write. TSHS.History false (logical)
NOTE: the file generated depends on If true, a series of TSHS files with names of the form

SCF.MixAfterConvergence. SystemLabel.N.TSHS is created to hold the complete history of the

Hamiltonian and overlap matrix. Each file corresponds to a geometry
step. The overlap matrix is stored only once per SCF cycle. This
option only works with TRANSTESTA.

The following options control the creation of netCDF files. The relevant
routines have not been optimized yet for large-scale calculations, so in
this case the options should not be turned on (they are off by default).

Write. DM.NetCDF true (logical) o .
. . . o . 6.9.7 Convergence criteria
It determines whether the density matrix (after the mixing step) is
output as a DM.nc netCDF file or not. NOTE: The older options with a DM prefix is still working for backwards
The file is overwritten at every SCF step. Use the compatibility. However, the following flags has precedence.
g:;te.DM.Hlstory.NetCDF option if a complete history is de- Note that all convergence criteria are additive and may thus be used

46

simultaneously for complete control.

SCF.DM.Converge true (logical)

Logical variable to use the density matrix elements as monitor of
self-consistency.

SCF.DM.Tolerance 10~* (real)

depends on: SCF.DM.Converge

Tolerance of Density Matrix. When the maximum difference between
the output and the input on each element of the DM in a SCF cycle
is smaller than SCF.DM.Tolerance, the self-consistency has been
achieved.

NOTE: DM.Tolerance is the actual default for this flag.

DM.Normalization.Tolerance 10

(real)

Tolerance for unnormalized density matrices (typically the product of
solvers such as PEXSI which have a built-in electron-count tolerance).
If this tolerance is exceeded, the program stops. It is understood as
a fractional tolerance. For example, the default will allow an excess
or shorfall of 0.01 electrons in a 1000-electron system.

SCF.H.Converge true (logical)
Logical variable to use the Hamiltonian matrix elements as moni-
tor of self-consistency: this is considered achieved when the max-
imum absolute change (dHmax) in the H matrix elements is be-
low SCF.H.Tolerance. The actual meaning of dHmax depends on
whether DM or H mixing is in effect: if mixing the DM, dHmax refers
to the change in H(in) with respect to the previous step; if mixing H,
dHmax refers to H(out)-H(in) in the previous(?) step.

SCF.H.Tolerance 10 3¢V (energy)

depends on: SCF.H.Converge

If SCF.H.Converge is true, then self-consistency is achieved when
the maximum absolute change in the Hamiltonian matrix elements
is below this value.

SCF.EDM.Converge true (logical)
Logical variable to use the energy density matrix elements as monitor

47

of self-consistency: this is considered achieved when the maximum
absolute change (dEmax) in the energy density matrix elements is
below SCF.EDM.Tolerance. The meaning of dEmax is equivalent
to that of SCF.DM.Tolerance.

SCF.EDM.Tolerance 107 %eV (energy)

depends on: SCF.EDM.Converge
If SCF.EDM.Converge is true, then self-consistency is achieved
when the maximum absolute change in the energy density matrix
elements is below this value.

SCF.FreeE.Converge false (logical)

Logical variable to request an additional requirement for self-
consistency: it is considered achieved when the change in the to-
tal (free) energy between cycles of the SCF procedure is below
SCF.FreeE.Tolerance and the density matrix change criterion is
also satisfied.

SCF.FreeE.Tolerance 10~ *eV (energy)

depends on: SCF.FreeE.Converge
If SCF.FreeE.Converge is true, then self-consistency is achieved
when the change in the total (free) energy between cycles of the SCF
procedure is below this value and the density matrix change criterion
is also satisfied.

(logical)
Logical variable to use the Harris energy as monitor of self-
consistency: this is considered achieved when the change in the
Harris energy between cycles of the SCF procedure is below
SCF.Harris.Tolerance. This is useful if only energies are needed,
as the Harris energy tends to converge faster than the Kohn-Sham en-
ergy. The user is responsible for using the correct energies in further
processing, e.g., the Harris energy if the Harris criterion is used.

To help in basis-optimization
tasks, a new file BASIS_HARRIS_ENTHALPY is provided, holding the
same information as BASIS_ENTHALPY but using the Harris energy
instead of the Kohn-Sham energy.

NOTE: this

SCF.Harris.Converge false

setting to true makes SCF.DM.Converge

SCF.H.Converge default to false.

SCF.Harris.Tolerance 10~*eV (energy)

depends on: SCF.Harris.Converge
If SCF.Harris.Converge is true, then self-consistency is achieved
when the change in the Harris energy between cycles of the SCF
procedure is below this value. This is useful if only energies are
needed, as the Harris energy tends to converge faster than the Kohn-
Sham energy.

6.10 The real-space grid and the eggbox-effect

SIESTA uses a finite 3D grid for the calculation of some integrals and
the representation of charge densities and potentials. Its fineness is deter-
mined by its plane-wave cutoff, as given by the MeshCutoff option. It
means that all periodic plane waves with kinetic energy lower than this
cutoff can be represented in the grid without aliasing. In turn, this im-
plies that if a function (e.g. the density or the effective potential) is an
expansion of only these plane waves, it can be Fourier transformed back
and forth without any approximation.

The existence of the grid causes the breaking of translational symmetry
(the egg-box effect, due to the fact that the density and potential do have
plane wave components above the mesh cutoff). This symmetry breaking
is clear when moving one single atom in an otherwise empty simulation
cell. The total energy and the forces oscillate with the grid periodicity
when the atom is moved, as if the atom were moving on an eggbox. In
the limit of infinitely fine grid (infinite mesh cutoff) this effect disappears.

For reasonable values of the mesh cutoff, the effect of the eggbox on
the total energy or on the relaxed structure is normally unimportant.
However, it can affect substantially the process of relaxation, by increasing
the number of steps considerably, and can also spoil the calculation of
vibrations, usually much more demanding than relaxations.

The Util/Scripting/eggbox_checker.py script can be used to diagnose
the eggbox effect to be expected for a particular pseudopotential /basis-set
combination.

48

Apart from increasing the mesh cutoff (see the MeshCutoff option), the
following options might help in lessening a given eggbox problem. But
note also that a filtering of the orbitals and the relevant parts of the
pseudopotential and the pseudocore charge might be enough to solve the
issue (see Sec. 6.3.9).

MeshCutoff 100 Ry (energy)
Defines the plane wave cutoff for the grid.
MeshSubDivisions 2 (integer)

Defines the number of sub-mesh points in each direction used to save
index storage on the mesh. It affects the memory requirements and
the CPU time, but not the results.

NOTE: the default value might be a bit conservative. Users might
experiment with higher values, 4 or 6, to lower the memory and
cputime usage.

%block Grid.CellSampling (None) (block)
It specifies points within the grid cell for a symmetrization sampling.

For a given grid the grid-cutoff convergence can be improved (and the
eggbox lessened) by recovering the lost symmetry: by symmetrizing
the sensitive quantities. The full symmetrization implies an integra-
tion (averaging) over the grid cell. Instead, a finite sampling can be
performed.

It is a sampling of rigid displacements of the system with respect
to the grid. The original grid-system setup (one point of the grid
at the origin) is always calculated. It is the (0,0,0) displacement.
The block Grid.CellSampling gives the additional displacements
wanted for the sampling. They are given relative to the grid-cell
vectors, i.e., (1,1,1) would displace to the next grid point across the
body diagonal, giving an equivalent grid-system situation (a useless
displacement for a sampling).

Examples: Assume a cubic cell, and therefore a (smaller) cubic grid

cell. If there is no block or the block is empty, then the original
(0,0,0) will be used only. The block:

%block Grid.CellSampling
0.5 0.5 0.5

%endblock Grid.CellSampling

would use the body center as a second point in the sampling. Or:

%block Grid.CellSampling

0.5 0.5 0.0
0.5 0.0 0.5
0.0 0.5 0.5

%endblock Grid.CellSampling

gives an fcc kind of sampling, and

%block Grid.CellSampling
0.5 .0

O O O O O
(¢ ¢ e el
O O O O O O
OO o0 © 01 O
O O O O O o
o oo o1 ©

0.5 0.5 0.5
hendblock Grid.CellSampling

gives again a cubic sampling with half the original side length. It is
not trivial to choose a right set of displacements so as to maximize
the new ’effective’ cutoff. It depends on the kind of cell. It may
be automatized in the future, but it is now left to the user, who
introduces the displacements manually through this block.

The quantities which are symmetrized are: (i) energy terms that
depend on the grid, (i) forces, (iii) stress tensor, and (iv) electric
dipole.

The symmetrization is performed at the end of every SCF cycle.
The whole cycle is done for the (0,0,0) displacement, and, when the
density matrix is converged, the same (now fixed) density matrix is
used to obtain the desired quantities at the other displacements (the
density matrix itself is not symmetrized as it gives a much smaller
egg-box effect). The CPU time needed for each displacement in the
Grid.CellSampling block is of the order of one extra SCF iteration.
This may be required in systems where very precise forces are needed,
and/or if partial cores are used. It is advantageous to test whether
the forces are sampled sufficiently by sampling one point.

Additionally this may be given as a list of 3 integers which corre-

49

%block EggboxRemove

sponds to a “Monkhorst-Pack” like grid sampling. I.e.
Grid.CellSampling [2 2 2]
is equivalent to

%block Grid.CellSampling

0.5 0.0 0.0
0.0 0.5 0.0
0.5 0.5 0.0
0.0 0.0 0.5
0.5 0.0 0.5
0.0 0.5 0.5

0.5 0.5 0.5
%endblock Grid.CellSampling

This is an easy method to see if the flag is important for your system
or not.

(None) (block)
For recovering translational invariance in an approximate way.

It works by substracting from Kohn-Sham’s total energy (and forces)
an approximation to the eggbox energy, sum of atomic contributions.
Each atom has a predefined eggbox energy depending on where it
sits on the cell. This atomic contribution is species dependent and
is obviously invariant under grid-cell translations. Each species con-
tribution is thus expanded in the appropriate Fourier series. It is
important to have a smooth eggbox, for it to be represented by a
few Fourier components. A jagged egg-box (unless very small, which
is then unimportant) is often an indication of a problem with the
pseudo.

In the block there is one line per Fourier component. The first in-
teger is for the atomic species it is associated with. The other three
represent the reciprocal lattice vector of the grid cell (in units of the
basis vectors of the reciprocal cell). The real number is the Fourier
coefficient in units of the energy scale given in EggboxScale (see
below), normally 1 eV.

The number and choice of Fourier components is free, as well as their
order in the block. One can choose to correct only some species and
not others if, for instance, there is a substantial difference in hardness
of the cores. The 0 0 0 components will add a species-dependent

constant energy per atom. It is thus irrelevant except if comparing
total energies of different calculations, in which case they have to be
considered with care (for instance by putting them all to zero, i.e. by
not introducing them in the list). The other components average to
zero representing no bias in the total energy comparisons.

If the total energies of the free atoms are put as 0 0 0 coefficients
(with spin polarisation if adequate etc.) the corrected total energy
will be the cohesive energy of the system (per unit cell).

Ezxample: For a two species system, this example would give a quite
sufficent set in many instances (the actual values of the Fourier coef-
ficients are not realistic).

%block EggBoxRemove

1 0 0 0 -143.86904
1 0 0 1 0.00031
1 0 1 0 0.00016
1 0 1 1 -0.00015
1 1 0 O 0.00035
1 1 0 1 -0.00017
2 0 0 0 -270.81903
2 0 0 1 0.00015
2 0 1 0 0.00024
2 1 0 O 0.00035
2 1 0 1 -0.00077
2 1 1 0 -0.00075

2 1 1 1 -0.00002
hendblock EggBoxRemove

It represents an alternative to grid-cell sampling (above). It is only
approximate, but once the Fourier components for each species are
given, it does not represent any computational effort (neither memory
nor time), while the grid-cell sampling requires CPU time (roughly
one extra SCF step per point every MD step).

It will be particularly helpful in atoms with substantial partial core
or semicore electrons.

NOTE: this should only be used for fixed cell calculations, i.e. not
with M D.VariableCell.

For the time being, it is up to the user to obtain the Fourier
components to be introduced. They can be obtained by moving
one isolated atom through the cell to be used in the calculation

50

(for a give cell size, shape and mesh), once for each species. The
Util/Scripting/eggbox__checker.py script can be used as a starting
point for this.

EggboxScale 1¢eV (energy)

Defines the scale in which the Fourier components of the egg-box
energy are given in the EggboxRemove block.

6.11 Matrix elements of the Hamiltonian and overlap

NeglNonOverlapInt false (logical)
Logical variable to neglect or compute interactions between orbitals
which do not overlap. These come from the KB projectors. Neglect-
ing them makes the Hamiltonian more sparse, and the calculation
faster.

NOTE: use with care!

SaveHS false (logical)

Instructs to write the Hamiltonian and overlap matrices, as well
as other data required to generate bands and density of states, in
file SystemLabel.HSX. The .HSX format is more compact than the
traditional .HS, and the Hamiltonian, overlap matrix, and relative-
positions array (which is always output, even for gamma-point only
calculations) are in single precision.

The program hsx2hs in Util/HSX can be used to generate an old-
style .HS file if needed.

SIESTA produces also an .HSX file if the COOP.Write option is
active.

See also the Write. DMIHS.Net CDF and
Write. DMHS.History.NetCDF options.

6.11.1 The auxiliary supercell

When using k-points, this auxiliary supercell is needed to compute prop-
erly the matrix elements involving orbitals in different unit cells. It is
computed automatically by the program at every geometry step.

FixAuxiliaryCell false

(logical)
Logical variable to control whether the auxiliary cell is changed dur-

ing a variable cell optimization.

NaiveAuxiliaryCell false

(logical)
If true, the program does not check whether the auxiliary cell con-
structed with a naive algorithm is appropriate. This variable is only
useful if one wishes to reproduce calculations done with previous ver-
sions of the program in which the auxiliary cell was not large enough,

as indicated by warnings such as:
WARNING: orbital pair 1 341 is multiply connected
Only small numerical differences in the results are to be expected.

Note that for gamma-point-only calculations there is an implicit
“folding” of matrix elements corresponding to the images of orbitals
outside the unit cell. If information about the specific values of these
matrix elements is needed (as for COOP/COHP analysis), one has
to make sure that the unit cell is large enough.

6.12 Calculation of the electronic structure

SIESTA can use three qualitatively different methods to determine the
electronic structure of the system. The first is standard diagonalization,
which works for all systems and has a cubic scaling with the size. The
second is based on the direct minimization of a special functional over
a set of trial orbitals. These orbitals can either extend over the entire
system, resulting in a cubic scaling algorithm, or be constrained within
a localization radius, resulting in a linear scaling algorithm. The former
is a recent implementation (described in 6.12.4), that can be viewed as
an equivalent approach to diagonalization in terms of the accuracy of the
solution; the latter is the historical O(N) method used by SIESTA (de-
scribed in 6.12.5); it scales in principle linearly with the size of the system
(only if the size is larger than the radial cutoff for the local solution wave-
functions), but is quite fragile and substantially more difficult to use, and
only works for systems with clearly separated occupied and empty states.
The default is to use diagonalization. The third method (PEXSI) is based
on the pole expansion of the Fermi-Dirac function and the direct compu-
tation of the density matrix via an efficient scheme of selected inversion

(see Sec 6.13).

The calculation of the H and S matrix elements is always done with an
O(N) method. The actual scaling is not linear for small systems, but it
becomes O(N) when the system dimensions are larger than the scale of
orbital r.’s.

The relative importance of both parts of the computation (matrix ele-
ments and solution) depends on the size and quality of the calculation.
The mesh cutoff affects only the matrix-element calculation; orbital cut-
off radii affect the matrix elements and all solvers except diagonalization;
the need for k-point sampling affects the solvers only, and the number of
basis orbitals affects them all.

In practice, the vast majority of users employ diagonalization (or the
OMM method) for the calculation of the electronic structure. This is so
because the vast majority of calculations (done for intermediate system
sizes) would not benefit from the O(N) or PEXSI solvers.

SolutionMethod diagon (string)

Character string to choose among diagonalization (diagon), cubic-
scaling minimization (OMM), Order-N (OrderN) solution of
the Kohn-Sham Hamiltonian, transiesta, or the PEXSI method
(PEXSI).

6.12.1 Diagonalization options

NumberOfEigenStates (all orbitals)

This parameter allows the user to reduce the number of eigenstates
that are calculated from the maximum possible. The benefit is that,
for a gamma point calculation, the cost of the diagonalisation is re-
duced by finding fewer eigenvectors. For example, during a geometry
optimisation, only the occupied states are required rather than the
full set of virtual orbitals. Note, that if the electronic temperature
is greater than zero then the number of partially occupied states in-
creases, depending on the band gap. The value specified must greater
than the number of occupied states and less than the number of basis
functions.

(integer)

Diag. ELPA false (logical)

(For parallel gamma-point calculations without spin orbit only) Use
the ELPA routines for diagonalization. Specifying a number of eigen-
vectors to store is possible through the symbol NumberOfEigen-
States (see above).

A description of some algorithms present in ELPA can be found in:
T. Auckenthaler, V. Blum, H.-J. Bungartz, T. Huckle, R. Johanni,
L. Kramer, B. Lang, H. Lederer, and P. R. Willems, “Parallel
solution of partial symmetric eigenvalue problems from electronic
structure calculations”, Parallel Computing 37, 783-794 (2011).
doi:10.1016/j.parco.2011.05.002.

Marek, A.; Blum, V.; Johanni, R.; Havu, V.; Lang, B.; Auckenthaler,
T.; Heinecke, A.; Bungartz, H.-J.; Lederer, H. “The ELPA library:
scalable parallel eigenvalue solutions for electronic structure theory
and computational science”, Journal of Physics Condensed Matter,
26 (2014) doi:10.1088/0953-8984/26,/21/213201

NOTE: It is not compatible with the Diag.ParallelOverK option.

Diag. MRRR false (logical)

For parallel I'-point calculations without spin orbit only.

Use the MRRR method in ScalLAPACK for diagonalization. Specify-
ing a number of eigenvectors to store is possible through the symbol
NumberOfEigenStates (see above).

NOTE: it is not compatible with the Diag.ParallelOverK option.
NOTE: The MRRR method is defaulted not to be compiled in, how-
ever, if your ScaLAPACK library does contain the relevant sources
one may add this pre-processor flag -DSIESTA__MRRR.

Diag.UseNewDiagk false (logical)

Selects whether a more efficient diagonalization routine (with inter-
mediate storage of eigenvectors in NetCDF format) is used for the
case of k-point sampling.

In order to use the new routine, netCDF support should be compiled
in. Specifying a number of eigenvectors to store is possible through
the symbol NumberOfEigenStates (see above). Note that for now,
for safety, all eigenvectors for a given k-point and spin are computed
by the diagonalization routine, but only that number specified by the
user are stored. If they are insufficient, the program stops. A rule

52

of thumb to select the number of eigenvectors to store is to count
the number of electrons and divide by two, and then apply a "safety
factor" of around 1.1-1.2 to take into account fractional occupations
and band overlaps.

A new file 0CCS is produced with information about the number of
states occupied.

This is an experimental feature.
NOTE: It is not compatible with the Diag.ParallelOverK option.

(logical)
Logical to select whether the normal or Divide and Conquer algo-
rithms are used within the Lapack diagonalisation routines.

Diag.DivideAndConquer true

Diag.AllInOne false (logical)

Logical to select whether a single call to lapack/scalapack is made
to perform the diagonalisation or whether the individual steps are
controlled by STESTA. Normally this option should not need to be
used.

Diag.NoExpert false (logical)
Logical to select whether the simple or expert versions of the lapack/
scalapack routines are used. Usually the expert routines are faster,

but may require slightly more memory.

Diag.PreRotate false (logical)

Logical to select whether the eigensystem is transformed according
to previously saved eigenvectors to create a near diagonal matrix and
then back transformed afterwards. This is included for future options,
but currently should not make any difference except to increase the
computational work!

Diag.Use2D true (logical)

Logical to select whether a 1-D or 2-D data decomposition should
be used when calling scalapack. The use of 2-D leads to superior
scaling to large numbers of processors and is therefore the default.
This option only influences the parallel performance.

6.12.2 Output of eigenvalues and wavefunctions

This section focuses on the output of eigenvalues and wavefunctions pro-
duced during the (last) iteration of the self-consistent cycle, and associated
to the appropriate k-point sampling.

For band-structure calculations (which typically use a different set of k-
points) and specific requests for wavefunctions, see Secs. 6.14 and 6.15,
respectively.

The complete set of wavefunctions obtained during the last iteration
of the SCF loop will be written to a NetCDF file WFS.nc if the
Diag.UseNewDiagk option is in effect.

The complete set of wavefunctions obtained during the last iteration
of the SCF loop will be written to SystemLabel.fullBZ.WFSX if the
COOP.Write option is in effect.

WriteEigenvalues false (logical)
If true it writes the Hamiltonian eigenvalues for the sampling k
points, in the main output file. If false, it writes them in the file
SystemLabel.EIG, which can be used by the Eig2D0S postprocess-
ing utility (in the Util/Eig2DOS directory) for obtaining the density
of states.

NOTE: this option only works for SolutionMethod which calcu-
lates the eigenvalues.

6.12.3 Occupation of electronic states and Fermi level

OccupationFunction FD (string)
String variable to select the function that determines the occupation
of the electronic states. Two options are available:

FD The usual Fermi-Dirac occupation function is used.

MP The occupation function proposed by Methfessel and Paxton
(Phys. Rev. B, 40, 3616 (1989)), is used.

The smearing of the electronic occupations is done, in both cases, us-
ing an energy width defined by the ElectronicTemperature vari-
able. Note that, while in the case of Fermi-Dirac, the occupations

OccupationMPOrder 1

ElectronicTemperature 300K

correspond to the physical ones if the electronic temperature is set
to the physical temperature of the system, this is not the case in the
Methfessel-Paxton function. In this case, the tempeature is just a
mathematical artifact to obtain a more accurate integration of the
physical quantities at a lower cost. In particular, the Methfessel-
Paxton scheme has the advantage that, even for quite large smearing
temperatures, the obtained energy is very close to the physical en-
ergy at T' = 0. Also, it allows a much faster convergence with respect
to k-points, specially for metals. Finally, the convergence to selfcon-
sistency is very much improved (allowing the use of larger mixing
coefficients).

For the Methfessel-Paxton case, one can use relatively large values
for the ElectronicTemperature parameter. How large depends on
the specific system. A guide can be found in the article by J. Kresse
and J. Furthmiiller, Comp. Mat. Sci. 6, 15 (1996).

If Methfessel-Paxton smearing is used, the order of the corresponding
Hermite polynomial expansion must also be chosen (see description
of variable OccupationMPOrder).

We finally note that, in both cases (FD and MP), once a finite tem-
perature has been chosen, the relevant energy is not the Kohn-Sham
energy, but the Free energy. In particular, the atomic forces are
derivatives of the Free energy, not the KS energy. See R. Wentzcov-
itch et al., Phys. Rev. B 45, 11372 (1992); S. de Gironcoli, Phys.
Rev. B 51, 6773 (1995); J. Kresse and J. Furthmiiller, Comp. Mat.
Sci. 6, 15 (1996), for details.

(integer)
Order of the Hermite-Gauss polynomial expansion for the electronic
occupation functions in the Methfessel-Paxton scheme (see Phys.
Rev. B 40, 3616 (1989)). Specially for metals, higher order ex-
pansions provide better convergence to the ground state result, even
with larger smearing temperatures, and provide also better conver-
gence with k-points.

NOTE: only used if OccupationFunction is MP.

(temperature/energy)

Temperature for Fermi-Dirac or Methfessel-Paxton distribution. Use-

ful specially for metals, and to accelerate selfconsistency in some
cases.

6.12.4 Orbital minimization method (OMM)

The OMM is an alternative cubic-scaling solver that uses a minimization
algorithm instead of direct diagonalization to find the occupied subspace.
The main advantage over diagonalization is the possibility of iteratively
reusing the solution from each SCF/MD step as the starting guess of the
following one, thus greatly reducing the time to solution. Typically, there-
fore, the first few SCF cycles of the first MD step of a simulation will be
slower than diagonalization, but the rest will be faster. The main disad-
vantages are that individual Kohn-Sham eigenvalues are not computed,
and that only a fixed, integer number of electrons at each k point/spin
is allowed. Therefore, only spin-polarized calculations with Spin.Fix are
allowed, and Spin.Total must be chosen appropriately. For non-I" point
calculations, the number of electrons is set to be equal at all k points.
Non-collinear calculations (see Spin) are not supported at present.

It is important to note that the OMM requires all occupied Kohn-Sham
eigenvalues to be negative; this can be achieved by applying a shift to the
eigenspectrum, controlled by ON.eta (in this case, ON.eta simply needs
to be higher than the HOMO level). If the OMM exhibits a pathologically
slow or unstable convergence, this is almost certainly due to the fact that
the default value of ON.eta (0.0 €V) is too low, and should be raised by
a few eV.

OMM.UseCholesky true (logical)
Select whether to perform a Cholesky factorization of the general-
ized eigenvalue problem; this removes the overlap matrix from the
problem but also destroys the sparsity of the Hamiltonian matrix.

OMM.Use2D true (logical)
Select whether to use a 2D data decomposition of the matrices for
parallel calculations. This generally leads to superior scaling for large
numbers of MPI processes.

OMM.UseSparse false (logical)

Select whether to make use of the sparsity of the Hamiltonian and
overlap matrices where possible when performing matrix-matrix mul-
tiplications (these operations are thus reduced from O(N?) to O(N?)
without loss of accuracy).

NOTE: not compatible
with OMM.UseCholesky, OMM.Use2D, or non-I" point calcu-
lations

OMM.Precon -1

Number of SCF steps for all MD steps for which to apply a precon-
ditioning scheme based on the overlap and kinetic energy matrices;
for negative values the preconditioning is always applied. Precondi-
tioning is usually essential for fast and accurate convergence (note,
however, that it is not needed if a Cholesky factorization is performed;
in such cases this variable will have no effect on the calculation).

NOTE: cannot be used with OMM.UseCholesky.

(integer)

OMM.PreconFirstStep (OMM.Precon) (integer)

Number of SCF steps in the first MD step for which to apply the
preconditioning scheme; if present, this will overwrite the value given
in OMM.Precon for the first MD step only.

OMM.Diagon 0

Number of SCF steps for all MD steps for which to use a standard
diagonalization before switching to the OMM; for negative values
diagonalization is always used, and so the calculation is effectively
equivalent to SolutionMethod diagon. In general, selecting the
first few SCF steps can speed up the calculation by removing the
costly initial minimization (at present this works best for I' point
calculations).

(integer)

OMM.DiagonFirstStep (OMM.Diagon) (integer)

Number of SCF steps in the first MD step for which to use a standard
diagonalization before switching to the OMM; if present, this will
overwrite the value given in OMM.Diagon for the first MD step
only.

OMM.BlockSize (BlockSize) (integer)

Blocksize used for distributing the elements of the matrix over MPI
processes. Specifically, this variable controls the dimension relating
to the trial orbitals used in the minimization (equal to the number
of occupied states at each k point/spin); the equivalent variable for
the dimension relating to the underlying basis orbitals is controlled
by BlockSize.

OMM.TPreconScale 10Ry (energy)
Scale of the kinetic energy preconditioning (see C. K. Gan et al.,
Comput. Phys. Commun. 134, 33 (2001)). A smaller value indi-
cates more aggressive kinetic energy preconditioning, while an infi-
nite value indicates no kinetic energy preconditioning. In general, the
kinetic energy preconditioning is much less important than the tenso-
rial correction brought about by the overlap matrix, and so this value
will have fairly little impact on the overall performace of the precon-
ditioner; however, too aggressive kinetic energy preconditioning can
have a detrimental effect on performance and accuracy.

OMM.RelTol 107 (real)

Relative tolerance in the conjugate gradients minimization of the
Kohn-Sham band energy (see ON.Etol).

OMDM.Eigenvalues false (logical)

Select whether to perform a diagonalization at the end of each MD
step to obtain the Kohn-Sham eigenvalues.

OMM.WriteCoeffs false (logical)

Select whether to write the coefficients of the solution orbitals to file
at the end of each MD step.

OMM.ReadCoeffs false (logical)

Select whether to read the coefficients of the solution orbitals from
file at the beginning of a new calculation. Useful for restarting
an interrupted calculation, especially when used in conjuction with
DM.UseSaveDM. Note that the same number of MPI processes
and values of OMM.Use2D, OMM.BlockSize, and BlockSize
must be used when restarting.

OMM.LongOutput false (logical)

95

Select whether to output detailed information of the conjugate gra-
dients minimization for each SCF step.

6.12.5 Order(N) calculations

The Ordern(N) subsystem is quite fragile and only works for systems with
clearly separated occupied and empty states. Note also that the option
to compute the chemical potential automatically does not yet work in
parallel.

NOTE: Since it is used less often, bugs creeping into the O(N) solver
have been more resilient than in more popular bits of the code. Work is
ongoing to clean and automate the O(N) process, to make the solver more
user-friendly and robust.

ON.functional Kim (string)
Choice of order-N minimization functionals:

Kim Functional of Kim, Mauri and Galli, PRB 52, 1640 (1995).

Ordejon-Mauri Functional of Ordején et al, or Mauri et al, see PRB
51, 1456 (1995). The number of localized wave functions (LWFs)
used must coincide with Ng;/2 (unless spin polarized). For the
initial assignment of LWF centers to atoms, atoms with even num-
ber of electrons, n, get n/2 LWFs. Odd atoms get (n + 1)/2 and
(n —1)/2 in an alternating sequence, ir order of appearance (con-
trolled by the input in the atomic coordinates block).

files Reads localized-function information from a file and chooses au-
tomatically the functional to be used.

ON.MaxNumlter 1000 (integer)
Maximum number of iterations in the conjugate minimization of the
electronic energy, in each SCF cycle.

ON.Etol 1078 (real)

Relative-energy tolerance in the conjugate minimization of the elec-
tronic energy. The minimization finishes if 2(F, — E,—1)/(E, +
E,_1) < ON.Etol.

ON.eta 0eV (energy)

Fermi level parameter of Kim et al.. This should be in the energy
gap, and tuned to obtain the correct number of electrons. If the
calculation is spin polarised, then separate Fermi levels for each spin
can be specified.

ON.eta.alpha 0eV (energy)
Fermi level parameter of Kim et al. for alpha spin electrons. This
should be in the energy gap, and tuned to obtain the correct number
of electrons. Note that if the Fermi level is not specified individually
for each spin then the same global eta will be used.

ON.eta.beta 0eV (energy)
Fermi level parameter of Kim et al. for beta spin electrons. This
should be in the energy gap, and tuned to obtain the correct number
of electrons. Note that if the Fermi level is not specified individually
for each spin then the same global eta will be used.

ON.RcLWF 9.5 Bohr (length)
Localization redius for the Localized Wave Functions (LWF’s).

ON.ChemicalPotential false (logical)

Specifies whether to calculate an order-N estimate of the Chemical
Potential, by the projection method (Goedecker and Teter, PRB 51,
9455 (1995); Stephan, Drabold and Martin, PRB 58, 13472 (1998)).
This is done by expanding the Fermi function (or density matrix)
at a given temperature, by means of Chebyshev polynomials, and
imposing a real space truncation on the density matrix. To obtain a
realistic estimate, the temperature should be small enough (typically,
smaller than the energy gap), the localization range large enough
(of the order of the one you would use for the Localized Wannier
Functions), and the order of the polynomial expansion sufficiently
large (how large depends on the temperature; typically, 50-100).

NOTE: this option does not work in parallel. An alternative is
to obtain the approximate value of the chemical potential using an
initial diagonalization.

ON.ChemicalPotential.Use false (logical)

o6

Specifies whether to use the calculated estimate of the Chemical Po-
tential, instead of the parameter ON.eta for the order-N energy
functional minimization. This is useful if you do not know the po-
sition of the Fermi level, typically in the beginning of an order-N
run.

NOTE: this overrides the value of ON.eta
and ON.ChemicalPotential. Also, this option does not work in
parallel. An alternative is to obtain the approximate value of the
chemical potential using an initial diagonalization.

ON.ChemicalPotential. Rc 9.5 Bohr (length)

Defines the cutoff radius for the density matrix or Fermi operator in
the calculation of the estimate of the Chemical Potential.

ON.ChemicalPotential. Temperature 0.05Ry
(temperature/energy)
Defines the temperature to be used in the Fermi function expansion
in the calculation of the estimate of the Chemical Potential. To have
an accurate results, this temperature should be smaller than the gap
of the system.

ON.ChemicalPotential.Order 100 (integer)

Order of the Chebishev expansion to calculate the estimate of the
Chemical Potential.

ON.LowerMemory false (logical)
If true, then a slightly reduced memory algorithm is used in the
3-point line search during the order N minimisation. Only affects
parallel runs.

Output of localized wavefunctions At the end of each conjugate
gradient minimization of the energy functional, the LWF’s are stored on
disk. These can be used as an input for the same system in a restart, or
in case something goes wrong. The LWEF’s are stored in sparse form in
file SystemLabel. LWF

It is important to keep very good care of this file, since the first mini-
mizations can take MANY steps. Loosing them will mean performing the

whole minimization again. It is also a good practice to save it periodically
during the simulation, in case a mid-run restart is necessary.

ON.UseSaveLWF false

Instructs to read the localized wave functions stored
SystemLabel.LWF by a previous run.

(logical)
in file

6.13 The PEXSI solver

The PEXSI solver is based on the combination of the pole expansion of
the Fermi-Dirac function and the computation of only a selected (sparse)
subset of the elements of the matrices (H — 2,5)~! at each pole 2.

This solver can efficiently use the sparsity pattern of the Hamiltonian
and overlap matrices generated in SIESTA, and for large systems has
a much lower computational complexity than that associated with the
matrix diagonalization procedure. It is also highly scalable.

The PEXSI technique can be used to evaluate the electron density, free
energy, atomic forces, density of states and local density of states without
computing any eigenvalue or eigenvector of the Kohn-Sham Hamiltonian.
It can achieve accuracy fully comparable to that obtained from a matrix
diagonalization procedure for general systems, including metallic systems
at low temperature.

The current implementation of the PEXSI solver in STESTA makes use of
the full fine-grained-level interface in the PEXSI library (http://pexsi.
org), and can deal with spin-polarization, but it is still restricted to I'-
point calculations.

The following is a brief description of the input-file parameters relevant
to the workings of the PEXSI solver. For more background, including a
discussion of the conditions under which this solver is competitive, the
user is referred to the paper [5], and references therein.

The technology involved in the PEXSI solver can also be used to com-
pute densities of states and “local densities of states”. These features
are documented in this section and also linked to in the relevant general
sections.

6.13.1 Pole handling

Note that the temperature for the Fermi-Dirac distribution which is pole-
expanded is taken directly from the ElectronicTemperature parameter
(see Sec. 6.12.3).

PEXSI.NumPoles 40
Effective number of poles used to expand the Fermi-Dirac function.

(integer)

PEXSI.deltaE 3Ry (energy)

In principle PEXSI.deltaE should be Ey,.x — @, where FEp.x is
the largest eigenvalue for (H,S), and p is the chemical poten-
tial. However, due to the fast decay of the Fermi-Dirac function,
PEXSI.deltaE can often be chosen to be much lower. In practice
we set the default to be 3 Ryd. This number should be set to be larger
if the difference between Tr[H - DM] and Tr[S « EDM] (displayed in
the output if PEXSI.Verbosity is at least 2) does not decrease with
the increase of the number of poles.

PEXSI.Gap ORy (energy)
Spectral gap. This can be set to be 0 in most cases.
6.13.2 Parallel environment and control options

MPI.Nprocs.SIESTA (total processors) (integer)

Specifies the number of MPI processes to be used in those parts of
the program (such as Hamiltonian setup and computation of forces)
which are outside of the PEXSI solver itself. This is needed in large-
scale calculations, for which the number of processors that can be
used by the PEXSI solver is much higher than those needed by other
parts of the code.

Note that when the PEXSI solver is not used, this parameter will
simply reduce the number of processors actually used by all parts of
the program, leaving the rest idle for the whole calculation. This will
adversely affect the computing budget, so take care not to use this
option in that case.

PEXSI.NP-per-pole 4 (integer)

http://pexsi.org
http://pexsi.org

PEXSI.Ordering 1

PEXSI.NP-symbfact 1

Number of MPI processes used to perform the PEXSI computations
in one pole. If the total number of MPI processes is smaller than
this number times the number of poles (times the spin multiplicity),
the PEXSI library will compute appropriate groups of poles in se-
quence. The minimum time to solution is achieved by increasing this
parameter as much as it is reasonable for parallel efficiency, and using
enough MPI processes to allow complete parallelization over poles.
On the other hand, the minimum computational cost (in the sense of
computing budget) is obtained by using the minimum value of this
parameter which is compatible with the memory footprint. The ad-
ditional parallelization over poles will be irrelevant for cost, but it
will obviously affect the time to solution.

Internally, SIESTA computes the processor grid parameters nprow
and npcol for the PEXSI library, with nprow >= npcol, and as
similar as possible. So it is best to choose PEXSI.NP-per-pole as
the product of two similar numbers.

NOTE: The total number of MPI processes must be divisible by
PEXSI.NP-per-pole. In case of spin-polarized calculations, the
total number of MPI processes must be divisible by PEXSI.NP-
per-pole times 2.

(integer)
For large matrices, symbolic factorization should be performed in
parallel to reduce the wall clock time. This can be done using
ParMETIS/PT-Scotch by setting PEXSI.Ordering to 0. However,
we have been experiencing some instability problem of the symbolic
factorization phase when ParMETIS/PT-Scotch is used. In such
case, for relatively small matrices one can either use the sequential
METIS (PEXSI.Ordering = 1) or set PEXSI.NP-symbfact to
1.

(integer)
Number of MPI processes used to perform the symbolic factorizations
needed in the PEXSI procedure. A default value should be given to
reduce the instability problem. From experience so far setting this
to be 1 is most stable, but going beyond 64 does not usually improve
much.

o8

PEXSI.Verbosity 1

PEXSI.num-electron-tolerance 10~

PEXSI.num-electron-tolerance-lower-bound 102

PEXSI.num-electron-tolerance-upper-bound 0.5

(integer)
It determines the amount of information logged by the solver in dif-
ferent places. A value of zero gives minimal information.

o In the files logPEXSI[0-9]+, the verbosity level is interpreted by
the PEXSI library itself. In the latest version, when PEXSI is
compiled in RELEASE mode, only logPEXSIO is given in the
output. This is because we have observed that simultaneous
output for all processors can have very significant cost for a
large number of processors (>10000).

e In the SIESTA output file, a verbosity level of 1 and above will
print lines (prefixed by &o) indicating the various heuristics used
at each scf step. A verbosity level of 2 and above will print extra
information.

The design of the output logging is still in flux.

6.13.3 Electron tolerance and the PEXSI solver

(real)

Tolerance in the number of electrons for the PEXSI solver. At each
iteration of the solver, the number of electrons is computed as the
trace of the density matrix times the overlap matrix, and compared
with the total number of electrons in the system. This tolerance can
be fixed, or dynamically determined as a function of the degree of
convergence of the self-consistent-field loop.

(real)

See PEXSI.num-electron-tolerance-upper-bound.

(real)

The upper and lower bounds for the electron tolerance are used to
dynamically change the tolerance in the PEXSI solver, following the
simple algorithm:

tolerance = Max(lower_bound,Min(dDmax, upper_bound))

The first scf step uses the upper bound of the tolerance range, and
subsequent steps use progressively lower values, in correspondence
with the convergence-monitoring variable dDmax.

NOTE: This simple update schedule tends to work quite well. There
is an experimental algorithm, documented only in the code itself,
which allows a finer degree of control of the tolerance update.

counting is started.

6.13.4 Inertia-counting
PEXSI.mu-max-iter 10 (integer)
Maximum number of iterations of the PEXSI solver. Note that in

PEXSI.Inertia-Counts 3 (integer)

PEXSI.mu

PEXSI.mu-pexsi-safeguard 0.05Ry

this implementation there is no fallback procedure if the solver fails
to converge in this number of iterations to the prescribed tolerance.
In this case, the resulting density matrix might still be re-normalized,
and the calculation able to continue, if the tolerance for non normal-
ized DMs is not set too tight. For example,

(true_no_electrons/no_electrons) - 1.0
DM.NormalizationTolerance 1.0e-3

will allow a 0.1% error in the number of electrons. For obvious rea-
sons, this feature, which is also useful in connection with the dynamic
tolerance update, should not be abused.

If the parameters of the PEXSI solver are adjusted correctly (includ-
ing a judicious use of inertia-counting to refine the u bracket), we
should expect that the maximum number of solver iterations needed
is around 3

—0.6 Ry (energy)
The starting guess for the chemical potential for the PEXSI solver.
Note that this value does not affect the initial p bracket for the
inertia-count refinement, which is controlled by PEXSI.mu-min
and PEXSI.mu-max. After an inertia-count phase, y will be re-
set, and further iterations inherit this estimate, so this parameter is
only relevant if there is no inertia-counting phase.

(energy)
NOTE: This feature has been deactivated for now. The condition
for starting a new phase of inertia-counting is that the Newton es-
timation falls outside the current bracket. The bracket is expanded
accordingly.

The PEXSI solver uses Newton’s method to update the estimate of
w. If the attempted change in p is larger than PEXSI.mu-pexsi-
safeguard, the solver cycle is stopped and a fresh phase of inertia-

99

PEXSI.mu-min

PEXSI.mu-max O0Ry

PEXSI.safe-dDmax-no-inertia 0.05

In a given scf step, the PEXSI procedure can optionally employ a p
bracket-refinement procedure based on inertia-counting. Typically,
this is used only in the first few scf steps, and this parameter deter-
mines how many. If positive, inertia-counting will be performed for
exactly that number of scf steps. If negative, inertia-counting will
be performed for at least that number of scf steps, and then for as
long as the scf cycle is not yet deemed to be near convergence (as
determined by the PEXSI.safe-dDmax-no-inertia parameter).

NOTE: Since it is cheaper to perform an inertia-count phase than
to execute one iteration of the solver, it pays to call the solver only
when the p bracket is sufficiently refined.

—1Ry (energy)
The lower bound of the initial range for p used in the inertia-count
refinement. In runs with multiple geometry iterations, it is used only
for the very first scf iteration at the first geometry step. Further
iterations inherit possibly refined values of this parameter.

(energy)
The upper bound of the initial range for p used in the inertia-count
refinement. In runs with multiple geometry iterations, it is used only
for the very first scf iteration at the first geometry step. Further
iterations inherit possibly refined values of this parameter.

(real)

During the scf cycle, the variable conventionally called dDmax mon-
itors how far the cycle is from convergence. If PEXSI.Inertia-
Counts is negative, an inertia-counting phase will be performed in
a given scf step for as long as dDmax is greater than PEXSI.safe-
dDmax-no-inertia.

NOTE: Even though dDmax represents historically how far from

convergence the density-matrix is, the same mechanism applies to
other forms of mixing in which other magnitudes are monitored for

convergence (Hamiltonian, charge density...).

PEXSI.lateral-expansion-inertia 3¢V (energy)

If the correct u is outside the bracket provided to the inertia-counting
phase, the bracket is expanded in the appropriate direction(s) by this
amoount.

PEXSI.Inertia-mu-tolerance 0.05Ry (energy)

One of the criteria for early termination of the inertia-counting phase.
The value of the estimated p (basically the center of the resulting
brackets) is monitored, and the cycle stopped if its change from one
iteration to the next is below this parameter.

PEXSI.Inertia-max-iter 5 (integer)

Maximum number of inertia-count iterations per cycle.

PEXSI.Inertia-min-num-shifts 10 (integer)
Minimum number of sampling points for inertia counts.

PEXSI.Inertia-energy-width-tolerance
(PEXSI.Inertia-mu-tolerance) (energy)

One of the criteria for early termination of the inertia-counting phase.
The cycle stops if the width of the resulting bracket is below this
parameter.

6.13.5 Re-use of i information accross iterations

This is an important issue, as the efficiency of the PEXSI procedure de-
pends on how close a guess of u we have at our disposal. There are two
types of information re-use:

o Bracketing information used in the inertia-counting phase.

o The values of p itself for the solver.

PEXSI.safe-width-ic-bracket 4¢eV (energy)

By default, the u bracket used for the inertia-counting phase in
scf steps other than the first is taken as an interval of width
PEXSI.safe-width-ic-bracket around the latest estimate of p.

60

PEXSI.safe-dDmax-ef-inertia 0.1 (real)

The change in p from one scf iteration to the next can be crudely
estimated by assuming that the change in the band structure energy
(estimated as TrAHDM) is due to a rigid shift. When the scf cycle
is near convergence, this Ay can be used to estimate the new initial
bracket for the inertia-counting phase, rigidly shifting the output
bracket from the previous scf step. The cycle is assumed to be near
convergence when the monitoring variable dDmax is smaller than
PEXSI.safe-dDmax-ef-inertia.

NOTE: Even though dDmax represents historically how far from
convergence the density-matrix is, the same mechanism applies to
other forms of mixing in which other magnitudes are monitored for
convergence (Hamiltonian, charge density...).

NOTE: This criterion will lead in general to tighter brackets than the
previous one, but oscillations in H in the first few iterations might
make it more dangerous. More information from real use cases is
needed to refine the heuristics in this area.

PEXSI.safe-dDmax-ef-solver 0.05 (real)

When the scf cycle is near convergence, the Ay estimated as above
can be used to shift the initial guess for p for the PEXSI solver. The
cycle is assumed to be near convergence when the monitoring variable
dDmax is smaller than PEXSI.safe-dDmax-ef-solver.
NOTE: Even though dDmax represents historically how far from
convergence the density-matrix is, the same mechanism applies to
other forms of mixing in which other magnitudes are monitored for
convergence (Hamiltonian, charge density...).

PEXSI.safe-width-solver-bracket 4eV (energy)

In all cases, a “safe” bracket around p is provided even in direct calls
to the PEXSI solver, in case a fallback to executing internally a cycle
of inertia-counting is needed. The size of the bracket is given by
PEXSI.safe-width-solver-bracket

6.13.6 Calculation of the density of states by inertia-counting

The cumulative or integrated density of states (INTDOS) can be easily
obtained by inertia-counting, which involves a factorization of H — o8
for varying o (see SIESTA-PEXSI paper). Apart from the DOS-specific
options below, the “ordering”, “symbolic factorization”, and “pole group
size” (re-interpreted as the number of MPI processes dealing with a given

o) options are honored.

The current version of the code generates a file with the energy-INTDOS
information, PEXSI_INTDOS, which can be later processed to gener-
ate the DOS by direct numerical differentiation, or a SIESTA-style
SystemLabel .EIG file (using the Util/PEXSI/intdos2eig program).

PEXSI.DOS false (logical)

Whether to compute the DOS (actually, the INTDOS — see above)
using the PEXSI technology.

PEXSI.DOS.Emin —1Ry
Lower bound of energy window to compute the DOS in.
See PEXSI.DOS.Ef.Reference.

(energy)

PEXSI.DOS.Emax 1Ry
Upper bound of energy window to compute the DOS in.
See PEXSI.DOS.Ef.Reference.

(energy)

PEXSI.DOS.Ef.Reference true (logical)
If this flag is true, the bounds of the energy window
(PEXSI.DOS.Emin and PEXSI.DOS.Emax) are with respect to
the Fermi level.

PEXSI.DOS.NPoints 200

The number of points in the energy interval at which the DOS is
computed. It is rounded up to the nearest multiple of the number of
available factorization groups, as the operations are perfectly parallel
and there will be no extra cost involved.

(integer)

61

6.13.7 Calculation of the LDOS by selected-inversion

The local-density-of-states (LDOS) around a given reference energy e,
representing the contribution to the charge density of the states with
eigenvalues in the vicinity of €, can be obtained formally by a “one-pole
expansion” with suitable broadening (see SIESTA-PEXSI paper).

MW

Apart from the LDOS-specific options below, the “ordering”,
and “symbolic factorization” options are honored.

verbosity”,

The current version of the code generates a real-space grid file with
extension SystemLabel.LDSI, and (if netCDF is compiled-in) a file
Rho.grid.nc (which unfortunately will overwrite any other charge-
density files produced in the same run).

NOTE: The LDOS computed with this procedure is not exactly the same
as the vanilla STESTA LDOS, which uses an explicit energy interval. Here
the broadening acts around a single value of the energy.

PEXSI.LDOS false (logical)
Whether to compute the LDOS using the PEXSI technology.

PEXSI.LDOS.Energy 0Ry (energy)
The (absolute) energy at which to compute the LDOS.

PEXSI.LDOS.Broadening 0.01 Ry (energy)
The broadening parameter for the LDOS.

PEXSI.LDOS.NP-per-pole (PEXSI.NP-per-pole) (integer)

The value of this parameter supersedes PEXSI.NP-per-pole for
the calculation of the LDOS, which otherwise would keep idle all but
PEXSI.NP-per-pole MPI processes, as it essentially consists of a
“one-pole” procedure.

6.14 Band-structure analysis

This calculation of the band structure is performed optionally after
the geometry loop finishes, and the output information written to the
SystemLabel .bands file (see below for the format).

BandLinesScale pi/a (string) 0.500 0.500 0.500

Specifies the scale of the k vectors given in BandLines and Band- hendblock BandPoints
Points below. The options are: See also BandLines.
pi/a k-vector coordinates are given in Cartesian coordinates, in units WriteKbands false (logical)

of 7/a, where a is the lattice constant -
If true, it writes the coordinates of the k vectors defined for band

ReciprocalLatticeVectors k vectors are given in reciprocal-lattice- plotting, to the main output file.

vector coordinates

WriteBands false (logical)
If true, it writes the Hamiltonian eigenvalues corresponding to the
k vectors defined for band plotting, in the main output file.

NOTE: you might need to define explicitly a LatticeConstant tag in
your fdf file if you do not already have one, and make it consistent
with the scale of the k-points and any unit-cell vectors you might
have already defined.

. 6.14.1 Format of the .bands file
%block BandLines (None) (block)

Specifies the lines along which band energies are calculated (usually
along high-symmetry directions). An example for an FCC lattice is: FermiFnergy (all energies in eV) \\

Yblock BandLines kmin, kmax (along the k-lines path, i.e. range of k in the band plot
1 1.000 1.000 1.000 L # Begin at L Emin, Emax (range of all eigenvalues) \\
20 0.000 0.000 0.000 \Gamma # 20 points from L toNgmbeax0fBands, NumberOfSpins (1 or 2), NumberOfkPoints \\
25 2.000 0.000 0.000 X # 25 points from gammpito (Xek(iband,ispin,1),iband=1,NumberOfBands),ispin=1,NumberOfSpins
30 2.000 2.000 2.000 \Gamma # 30 points from X toggampuy \\
%endblock BandLines A\
where the last column is an optional IATEX label for use in the band - \\
plot. If only given points (not lines) are required, simply specify 1 in - \\
the first column of each line. The first column of the first line must klast, ek \\
be always 1. NumberOfkLines \\
NOTE: this block is not used if BandPoints is present. kAtBegOfLinel, kPointLabel \\
kAtEndOfLinel, kPointLabel \\
%block BandPoints (None) (block) O \\
Band energies are calculated for the list of arbitrary k points given -\
in the block. Units defined by BandLinesScale as for BandLines. - \\

The generated SystemLabel.bands file will contain the k point co- kAtEndOfLastLine, kPointLabel \\

ordinates (in a.u.) and the corresponding band energies (in eV).

Example: The gnubands postprocessing utility program (found in the Util/Bands di-
Yblock BandPoints rectory) reads the SystemLabel.bands for plotting. See the BandLines

0.000 0.000 0.000 # This is a comment. eg this isdghamdescriptor above for more information.
1.000 0.000 0.000

62

6.14.2 Output of wavefunctions associated to bands

The user can optionally request that the wavefunctions corresponding
to the computed bands be written to file. They are written to the
SystemLabel.bands.WFSX file. The relevant options are:

false

WFS.Write.For.Bands (logical)

Instructs the program to compute and write the wave functions as-
sociated to the bands specified (by a BandLines or a BandPoints
block) to the file SystemLabel.WFSX.

The information in this file might be useful, among other things, to
generate “fatbands” plots, in which both band eigenvalues and infor-
mation about orbital projections is presented. See the fat program
in the Util/COOP directory for details.

WFS.Band.Min 1 (integer)

Specifies the lowest band index of the wave-functions to be written to
the file SystemLabel.WFSX for each k-point (all k-points in the band
set are affected).

WFS.Band.Max number of orbitals
Specifies the highest band index of the wave-functions to be written
to the file SystemLabel.WFSX for each k-point (all k-points in the
band set are affected).

(integer)

6.15 Output of selected wavefunctions

The user can optionally request that specific wavefunctions are written to
file. These wavefunctions are re-computed after the geometry loop (if any)
finishes, using the last (presumably converged) density matrix produced
during the last self-consistent field loop (after a final mixing). They are
written to the SystemLabel.selected.WFSX file.

Note that the complete set of wavefunctions obtained during the last
iteration of the SCF loop will be written to SystemLabel.fullBZ. WFSX if
the COOP.Write option is in effect.

Note that the complete set of wavefunctions obtained during the last
iteration of the SCF loop will be written to a NetCDF file WFS.nc if the

63

Diag.UseNewDiagk option is in effect.

WaveFuncKPointsScale pi/a (string)

Specifies the scale of the k vectors given in WaveFuncKPoints be-
low. The options are:

pi/a k-vector coordinates are given in Cartesian coordinates, in units
of 7/a, where a is the lattice constant

ReciprocalLatticeVectors k vectors are given in reciprocal-lattice-
vector coordinates

%block WaveFuncKPoints (None) (block)

Specifies the k-points at which the electronic wavefunction coefficients
are written. An example for an FCC lattice is:

%block WaveFuncKPoints

0.000 0.000 0.000 from 1 to 10
2.000 0.000 0.000 135

1.500 1.500 1.500

%endblock WaveFuncKPoints

K wavefuncs, all

The index of a wavefunction is defined by its energy, so that the first
one has lowest energy.

The wuser can also narrow the energy-range used with the
WPEFS.Energy.Min and WFS.Energy.Max options (both take an
energy (with units) as extra argument — see section 6.17.3). Care
should be taken to make sure that the actual values of the options
make sense.

The output of the wavefunctions in described in Section 6.15.

WriteWaveFunctions (logical)
If true, it writes to the output file a list of the wavefunctions actu-
ally written to the SystemLabel.selected.WFSX file, which is always
produced.

false

The unformatted WESX file contains the information of the k-points for
which wavefunctions coefficients are written, and the energies and coef-
ficients of each wavefunction which was specified in the input file (see
WaveFuncKPoints descriptor above). It also contains information on
the atomic species and the orbitals for postprocessing purposes.

Gamma wavefuncs 1 to 1C
X wavefuncs 1,3 and 5

NOTE: The SystemLabel.WFSX file is in a more compact form than
the old WFS, and the wavefunctions are output in single precision. The
Util/WFS/wisx2wfs program can be used to convert to the old format.

The readwf and readwfsx postprocessing utilities programs (found in the
Util/WFS directory) read the SystemLabel.WFS or SystemLabel.WFSX
files, respectively, and generate a readable file.

6.16 Densities of states
6.16.1 Total density of states

There are several options to obtain the total density of states:

e The Hamiltonian eigenvalues for the SCF sampling k points can be
dumped into SystemLabel. EIG in a format analogous to SystemLa-
bel.bands, but without the kmin, kmax, emin, emax information,
and without the abscissa. The Eig2D0S postprocessing utility can
be then used to obtain the density of states. See the WriteEigen-
values descriptor.

e As a side-product of a partial-density-of-states calculation (see be-
low)

e As one of the files produced by the Util/CO0P/mprop during the
off-line analysis of the electronic structure. This method allows the
flexibility of specifying energy ranges and resolutions at will, without
re-running STESTA See Sec. 6.17.3.

o Using the inertia-counting routines in the PEXSI solver (see
Sec. 6.13.6).

6.16.2 Partial (projected) density of states

There are two options to obtain the partial density of states

¢ Using the options below

64

e Using the Util/CO0P/mprop program for the off-line analysis of the

electronic structure in PDOS mode. This method allows the flexi-
bility of specifying energy ranges, orbitals, and resolutions at will,
without re-running SIESTA. See Sec. 6.17.3.

%block ProjectedDensityOfStates (None) (block)

Instructs to write the Total Density Of States (Total DOS) and the
Projected Density Of States (PDOS) on the basis orbitals, between
two given energies, in files SystemLabel .D0OS and SystemLabel.PDOS,
respectively. The block must be a single line with the energies of the
range for PDOS projection, (relative to the program’s zero, i.e. the
same as the eigenvalues printed by the program), the peak width (an
energy) for broadening the eigenvalues, the number of points in the
energy window, and the energy units. An example is:

%block ProjectedDensityOfStates
-20.00 10.00 0.200 500 eV
%endblock ProjectedDensityOfStates

By default the projected density of states is generated for the same
grid of points in reciprocal space as used for the SCF calcula-
tion. However, a separate set of K-points, usually on a finer grid,
can be generated using one of the options PDOS.kgrid.Cutoff or
PDOS.kgrid.MonkhorstPack. The format of these options is ex-
actly the same as for kgrid.Cutoff and kgrid.MonkhorstPack,
respectively. Note that if a gamma point calculation is being used in
the SCF part, especially as part of a geometry optimisation, and this
is then to be run with a grid of K-points for the PDOS calculation
it is more efficient to run the SCF phase first and then restart to
perform the PDOS evaluation using the density matrix saved from
the SCF phase.

NOTE: the two energies of the range must be ordered, with lowest
first.

The total DOS is stored in a file called SystemLabel.D0S. The format
of this file is:

Energy value, Total DOS (spin up), Total DOS (spin down)

The Projected Density Of States for all the orbitals in the unit
cell is dumped sequentially into a file called SystemLabel.PDOS.

This file is structured using spacing and xml tags. A machine-
readable (but not very human readable) xml file pdos.xml is
also produced. Both can be processed by the program in
Util/pdosxml. The SystemLabel.PDOS file can be processed by
utilites in Util/Contrib/APostnikov.

In all cases, the units for the DOS are (number of states/eV), and
the Total DOS, g(e), is normalized as follows:

/ g(€)de = number of basis orbitals in unit cell (14)

—00

6.16.3 Local density of states

The LDOS is formally the DOS weighted by the amplitude of the corre-
sponding wavefunctions at different points in space, and is then a function
of energy and position. STESTA can output the LDOS integrated over a
range of energies. This information can be used to obtain simple STM im-
ages in the Tersoff-Hamann approximation (See Util/STM/simple-stm).

%block LocalDensityOfStates (None) (block)
Instructs to write the LDOS, integrated between two given energies,
at the mesh used by DHSCF, in file SystemLabel.LDOS. This file can
be read by routine IORHO, which may be used by an application
program in later versions. The block must be a single line with the
energies of the range for LDOS integration (relative to the program’s
zero, i.e. the same as the eigenvalues printed by the program) and
their units. An example is:

%block LocalDensityOfStates
-3.50 0.00 eV
%endblock LocalDensityOfStates

NOTE: the two energies of the range must be ordered, with lowest
first.

6.17 Options for chemical analysis

6.17.1 Mulliken charges and overlap populations
WriteMullikenPop 0 (integer)

65

It determines the level of Mulliken population analysis printed:

0 none

1 atomic and orbital charges

2 atomic, orbital and atomic overlap populations

3 atomic, orbital, atomic overlap and orbital overlap populations

The order of the orbitals in the population lists is defined by the order
of atoms. For each atom, populations for PAO orbitals and double-
z, triple-z, etc... derived from them are displayed first for all the
angular momenta. Then, populations for perturbative polarization
orbitals are written. Within a [-shell be aware that the order is not
conventional, being y, z, x for p orbitals, and zy, yz, 22, xz, and
x? — 1y for d orbitals.

MullikenInSCF false (logical)

If true, the Mulliken populations will be written for every SCF step
at the level of detail specified in WriteMullikenPop. Useful when
dealing with SCF problems, otherwise too verbose.

6.17.2 Voronoi and Hirshfeld atomic population analysis

WriteHirshfeldPop false (logical)

If true, the program calculates and prints the Hirshfeld “net” atomic
populations on each atom in the system. For a definition of the
Hirshfeld charges, see Hirshfeld, Theo Chem Acta 44, 129 (1977) and
Fonseca et al, J. Comp. Chem. 25, 189 (2003). Hirshfeld charges
are more reliable than Mulliken charges, specially for large basis sets.
The number printed is the total net charge of the atom: the variation
from the neutral charge, in units of |e|: positive (negative) values
indicate deficiency (excess) of electrons in the atom.

WriteVoronoiPop false (logical)

If true, the program calculates and prints the Voronoi “net” atomic
populations on each atom in the system. For a definition of the
Voronoi charges, see Bickelhaupt et al, Organometallics 15, 2923
(1996) and Fonseca et al, J. Comp. Chem. 25, 189 (2003). Voronoi
charges are more reliable than Mulliken charges, specially for large

basis sets. The number printed is the total net charge of the atom:
the variation from the neutral charge, in units of |e|: positive (nega-
tive) values indicate deficiency (excess) of electrons in the atom.

The Hirshfeld and Voronoi populations (partial charges) are computed by
default only at the end of the program (i.e., for the final geometry, after
self-consistency). The following options allow more control:

(logical)
The Hirshfeld and Voronoi populations are computed after self-
consistency is achieved, for all the geometry steps.

PartialChargesAtEveryGeometry false

PartialChargesAtEverySCFStep false (logical)

The Hirshfeld and Voronoi populations are computed for every step
of the self-consistency process.

Performance note: The default behavior (computing at the end of the
program) involves an extra calculation of the charge density.

6.17.3 Crystal-Orbital
(COOP/COHP)

overlap and hamilton populations

These curves are quite useful to analyze the electronic structure to get
insight about bonding characteristics. See the Util/COQOP directory for
more details. The COOP.Write option must be activated to get the
information needed.

References:

e Original COOP reference: Hughbanks, T.; Hoffmann, R., J. Am.
Chem. Soc., 1983, 105, 3528.

« Original COHP reference: Dronskowski, R.; BlAtichl, P. E., J. Phys.
Chem., 1993, 97, 8617.

e A tutorial introduction: Dronskowski, R. Computational Chemistry
of Solid State Materials; Wiley-VCH: Weinheim, 2005.

¢ Online material maintained by R. Dronskowski’s group: http://
www.cohp.de/

66

COOP.Write false (logical)
Instructs the program to generate SystemLabel.fullBZ.WFSX
(packed wavefunction file) and SystemLabel.HSX (H, S and X__ ij
file), to be processed by Util/CO0P/mprop to generate COOP/COHP
curves, (projected) densities of states, etc.

The .WFSX file is in a more compact form than the usual .WFS, and
the wavefunctions are output in single precision. The Util/wfsx2wfs
program can be used to convert to the old format. The HSX file is
in a more compact form than the usual HS, and the Hamiltonian,
overlap matrix, and relative-positions array (which is always output,
even for gamma-point only calculations) are in single precision.

The user can narrow the energy-range used (and save some file space)
by using the WFS.Energy.Min and WFS.Energy.Max options
(both take an energy (with units) as extra argument), and/or the
WFS.Band.Min and WFS.Band.Max options. Care should be
taken to make sure that the actual values of the options make sense.
Note that the band range options could also affect the output of wave-
functions associated to bands (see section 6.14.2), and that the en-
ergy range options could also affect the output of user-selected wave-
functions with the WaveFuncKPoints block (see section 6.15).

— 00

WFS.Energy.Min (energy)

Specifies the lowest value of the energy (eigenvalue) of the wave-
functions to be written to the file SystemLabel.fullBZ.WFSX for
each k-point (all k-points in the BZ sampling are affected).

WFS.Energy.Max oo (energy)

Specifies the highest value of the energy (eigenvalue) of the wave-
functions to be written to the file SystemLabel.fullBZ.WFSX for
each k-point (all k-points in the BZ sampling are affected).

6.18 Optical properties

OpticalCalculation false (logical)
If specified, the imaginary part of the dielectric function will be cal-
culated and stored in a file called SystemLabel.EPSIMG. The calcu-

lation is performed using the simplest approach based on the dipolar

http://www.cohp.de/
http://www.cohp.de/

transition matrix elements between different eigenfunctions of the
self-consistent Hamiltonian. For molecules the calculation is per-
formed using the position operator matrix elements, while for solids
the calculation is carried out in the momentum space formulation.
Corrections due to the non-locality of the pseudopotentials are intro-
duced in the usual way.

(energy)
This specifies the minimum of the energy range in which the fre-
quency spectrum will be calculated.

Optical.Energy.Minimum 0Ry

Optical.Energy.Maximum 10Ry (energy)

This specifies the maximum of the energy range in which the fre-
quency spectrum will be calculated.

Optical.Broaden 0Ry (energy)

If this is value is set then a Gaussian broadening will be applied to
the frequency values.

Optical.Scissor 0ORy (energy)

Because of the tendency of DFT calculations to under estimate the
band gap, a rigid shift of the unoccupied states, known as the scissor
operator, can be added to correct the gap and thereby improve the
calculated results. This shift is only applied to the optical calculation
and no where else within the calculation.

Optical. NumberOfBands all bands

This option controls the number of bands that are included in the
optical property calculation. Clearly this number must be larger than
the number of occupied bands and less than or equal to the number of
basis functions (which determines the number of unoccupied bands
available). Note, while including all the bands may be the most
accurate choice this will also be the most expensive!

(integer)

%block Optical. Mesh (None) (block)

This block contains 3 numbers that determine the mesh size used for
the integration across the Brillouin zone. For example:

%block Optical.Mesh

67

555
%endblock Optical.Mesh

The three values represent the number of mesh points in the direction
of each reciprocal lattice vector.

Optical.OffsetMesh false (logical)

If set to true, then the mesh is offset away from the gamma point for
odd numbers of points.

(string)
This option has three possible values that represent the type of po-
larization to be used in the calculation. The options are

Optical.PolarizationType polycrystal

polarized implies the application of an electric field in a given direc-
tion

unpolarized implies the propagation of light in a given direction

polycrystal In the case of the first two options a direction in space
must be specified for the electric field or propagation using the
Optical.Vector data block.

%block Optical.Vector (None) (block)
This block contains 3 numbers that specify the vector direction for
either the electric field or light propagation, for a polarized or unpo-
larized calculation, respectively. A typical block might look like:

%block Optical.Vector

1.0 0.0 0.5
hendblock Optical.Vector

6.19 Macroscopic polarization

%block PolarizationGrids (None) (block)

If specified, the macroscopic polarization will be calculated using the
geometric Berry phase approach (R.D. King-Smith, and D. Vander-
bilt, PRB 47, 1651 (1993)). In this method the electronic contri-
bution to the macroscopic polarization, along a given direction, is

calculated using a discretized version of the formula

ifqe S Y
P =45 /AdkL 221/0 dk||<ukn‘67k”|ukn> (15)

where f is the occupation (2 for a non-magnetic system), ¢. the
electron charge, M is the number of occupied bands (the system
must be an insulator), and uy, are the periodic Bloch functions. G
is the shortest reciprocal vector along the chosen direction.

As it can be seen in formula (15), to compute each component of the
polarization we must perform a surface integration of the result of a
1-D integral in the selected direction. The grids for the calculation
along the direction of each of the three lattice vectors are specified
in the block PolarizationGrids.

%block PolarizationGrids

10 3 4 yes
2 20 2 no
4 4 15

%endblock PolarizationGrids

All three grids must be specified, therefore a 3 x 3 matrix of integer
numbers must be given: the first row specifies the grid that will
be used to calculate the polarization along the direction of the first
lattice vector, the second row will be used for the calculation along
the the direction of the second lattice vector, and the third row for
the third lattice vector. The numbers in the diagonal of the matrix
specifie the number of points to be used in the one dimensional line
integrals along the different directions. The other numbers specifie
the mesh used in the surface integrals. The last column specifies if
the bidimensional grids are going to be diplaced from the origin or
not, as in the Monkhorst-Pack algorithm (PRB 13, 5188 (1976)).
This last column is optional. If the number of points in one of the
grids is zero, the calculation will not be performed for this particular
direction.

For example, in the given example, for the computation in the di-
rection of the first lattice vector, 15 points will be used for the line
integrals, while a 3 x 4 mesh will be used for the surface integration.
This last grid will be displaced from the origin, so I'" will not be in-
cluded in the bidimensional integral. For the directions of the second

BornCharge false

and third lattice vectors, the number of points will be 20 and 2 x 2,
and 15 and 4 x 4, respectively.

It has to be stressed that the macroscopic polarization can only be
meaningfully calculated using this approach for insulators. Therefore,
the presence of an energy gap is necessary, and no band can cross the
Fermi level. The program performs a simple check of this condition,
just by counting the electrons in the unit cell (the number must
be even for a non-magnetic system, and the total spin polarization
must have an integer value for spin polarized systems), however is
the responsability of the user to check that the system under study
is actually an insulator (for both spin components if spin polarized).

The total macroscopic polarization, given in the output of the pro-
gram, is the sum of the electronic contribution (calculated as the
Berry phase of the valence bands), and the ionic contribution, which
is simply defined as the sum of the atomic positions within the unit
cell multiply by the ionic charges (vaﬂ Z;ir;). In the case of the
magnetic systems, the bulk polarization for each spin component has
been defined as

1 e
P =P+ Z Zir; (16)

N, is the number of atoms in the unit cell, and r; and Z; are the
positions and charges of the ions.

It is also worth noting, that the macroscopic polarization given by
formula (15) is only defined modulo a “quantum” of polarization
(the bulk polarization per unit cell is only well defined modulo f¢.R,
being R an arbitrary lattice vector). However, the experimentally
observable quantities are associated to changes in the polarization
induced by changes on the atomic positions (dynamical charges),
strains (piezoelectric tensor), etc... The calculation of those changes,
between different configurations of the solid, will be well defined as
long as they are smaller than the “quantum”, i.e. the perturbations
are small enough to create small changes in the polarization.

(logical)
If true, the Born effective charge tensor is calculated for each atom
by finite differences, by calculating the change in electric polarization
(see PolarizationGrids) induced by the small displacements gener-

ated for the force constants calculation (see MD.TypeOfRun FC):

Qy 0P,

e Ou;p 4=0

-
Lo T

(17)

where e is the charge of an electron and €2y is the unit cell volume.

To calculate the Born charges it is necessary to specify both the
Born charge flag and the mesh used to calculate the polarization, for
example:

%block PolarizationGrids

7 3 3
3 7 3
3 3 7

%endblock PolarizationGrids
BornCharge True

The Born effective charge matrix is then written to the file
SystemLabel.BC.

The method by which the polarization is calculated may introduce an
arbitrary phase (polarization quantum), which in general is far larger
than the change in polarization which results from the atomic dis-
placement. It is removed during the calculation of the Born effective
charge tensor.

The Born effective charges allow the calculation of LO-TO splittings
and infrared activities. The version of the Vibra utility code in which
these magnitudes are calculated is not yet distributed with STESTA,
but can be obtained form Tom Archer (archert@tcd.ie).

6.20 Maximally Localized Wannier Functions.
Interface with the wannier90 code

wannier90 (http://www.wannier.org) is a code to generate maximally lo-
calized wannier functions according to the original Marzari and Vanderbilt
recipe.

It is strongly recommended to read the original papers on which this
method is based and the documentation of wannier90 code. Here we
shall focus only on those internal STESTA variables required to produce
the files that will be processed by wannier90.

A complete list of examples and tests (including molecules, metals, semi-
conductors, insulators, magnetic systems, plotting of Fermi surfaces or
interpolation of bands), can be downloaded from

http://personales.unican.es/junqueraj/ Wannier-examples.tar.gz

NOTE: The Bloch functions produced by a first-principles code have
arbitrary phases that depend on the number of processors used and other
possibly non-reproducible details of the calculation. In what follows it
is essential to maintain consistency in the handling of the overlap and
Bloch-funcion files produced and fed to wannier90.

Siesta2Wannier90.WriteMmn false (logical)

This flag determines whether the overlaps between the periodic part
of the Bloch states at neighbour k-points are computed and dumped
into a file in the format required by wannier90. These overlaps are
defined in Eq. (27) in the paper by N. Marzari et al., Review of
Modern Physics 84, 1419 (2012), or Eq. (1.7) of the Wannier90 User
Guide, Version 2.0.1.

The k-points for which the overlaps will be computed are read from
a .nnkp file produced by wannier90. It is strongly recommended for
the user to read the corresponding user guide.

The overlap matrices are written in a file with extension .mmn.

Siesta2Wannier90.WriteAmn false (logical)

This flag determines whether the overlaps between Bloch states and
trial localized orbitals are computed and dumped into a file in the
format required by wannier90. These projections are defined in Eq.
(16) in the paper by N. Marzari et al., Review of Modern Physics
84, 1419 (2012), or Eq. (1.8) of the Wannier90 User Guide, Version
2.0.1.

The localized trial functions to use are taken from the .nnkp file
produced by wannier90. It is strongly recommended for the user to
read the corresponding user guide.

The overlap matrices are written in a file with extension .amn.

Siesta2Wannier90. WriteEig false (logical)

Flag that determines whether the Kohn-Sham eigenvalues (in eV)
at each point in the Monkhorst-Pack mesh required by wannier90

are written to file. This file is mandatory in wannier90 if any of
disentanglement, plot_ bands, plot_ fermi_ surface or hr_ plot options
are set to true in the wannier90 input file.

The eigenvalues are written in a file with extension .eigW. This ex-
tension is chosen to avoid name clashes with SIESTA’s standard
eigenvalue file in case-insensitive filesystems.

Siesta2Wannier90.WriteUnk false (logical)

Produces UNKXXXXX.Y files which contain the periodic part of a Bloch
function in the unit cell on a grid given by global unk_nx, unk_ny,
unk_ nz variables. The name of the output files is assumed to have
the previous form, where the XXXXXX refer to the k-point index (from
00001 to the total number of k-points considered), and the Y refers
to the spin component (1 or 2)

The periodic part of the Bloch functions is defined by

Z Cnu(lg)em(f‘ﬁRAa—m%(F_ Fu
ﬁf\é,u

u, #(F) =

nk —R), (18)

—

where ¢, (7 — 7, — R) is a basis set atomic orbital centered on atom g
in the unit cell B, and cn“(E) are the coefficients of the wave function.
The latter must be identical to the ones used for wannierization in
M. (See the above comment about arbitrary phases.)

Siesta2Wannier90.UnkGrid1 (integer)

Number of points along the first lattice vector in the grid where the
periodic part of the wave functions will be plotted.

(mesh points along A)

Siesta2Wannier90.UnkGrid2

Number of points along the second lattice vector in the grid where
the periodic part of the wave functions will be plotted.

(mesh points along B) (integer)

Siesta2Wannier90.UnkGrid3

Number of points along the third lattice vector in the grid where the
periodic part of the wave functions will be plotted.

(mesh points along C) (integer)

Siesta2Wannier90.UnkGridBinary true (logical)

Flag that determines whether the periodic part of the wave function
in the real space grid is written in binary format (default) or in ASCII

70

6.21

format.

Siesta2Wannier90.NumberOfBands

In spin unpolarized calculations, number of bands that will be ini-
tially considered by STESTA to generate the information required by
wannier90. Note that it should be at least as large as the index of the
highest-lying band in the wannier90 post-processing. For example,
if the wannierization is going to involve bands 3 to 5, the SIESTA
number of bands should be at least 5. Bands 1 and 2 should appear
in a “excluded” list.

occupied bands (integer)

NOTE: you are highly encouraged to explicitly specify the number
of bands.

Siesta2Wannier90.NumberOfBandsUp
(Siesta2Wannier90.NumberOfBands)
In spin-polarized calculations, number of bands with spin up that
will be initially considered by SIESTA to generate the information
required by wannier90.

(integer)

Siesta2Wannier90.NumberOfBandsDown
(Siesta2Wannier90.NumberOfBands)
In spin-polarized calculations, number of bands with spin down that
will be initially considered by SIESTA to generate the information
required by wannier90.

(integer)

Systems with net charge or dipole, and electric fields

NetCharge 0 (real)

Specify the net charge of the system (in units of |e|). For charged sys-
tems, the energy converges very slowly versus cell size. For molecules
or atoms, a Madelung correction term is applied to the energy to
make it converge much faster with cell size (this is done only if the
cell is SC, FCC or BCC). For other cells, or for periodic systems
(chains, slabs or bulk), this energy correction term can not be ap-
plied, and the user is warned by the program. It is not advised to
do charged systems other than atoms and molecules in SC, FCC or
BCC cells, unless you know what you are doing.

Use: For example, the F~ ion would have NetCharge -1 , and the

SimulateDoping false

%block ExternalElectricField

SlabDipoleCorrection false

Na™ ion would have NetCharge 1. Fractional charges can also be
used.

(logical)
This option instructs the program to add a background charge density
to simulate doping. The new “doping” routine calculates the net
charge of the system, and adds a compensating background charge
that makes the system neutral. This background charge is constant
at points of the mesh near the atoms, and zero at points far from the
atoms. This simulates situations like doped slabs, where the extra
electrons (holes) are compensated by oposite charges at the material
(the ionized dopant impurities), but not at the vacuum. This serves
to simulate properly doped systems in which there are large portions
of vacuum, such as doped slabs.

(See Tests/sic-slab)

(None) (block)

It specifies an external electric field for molecules, chains and slabs.
The electric field should be orthogonal to ‘bulk directions’, like those
parallel to a slab (bulk electric fields, like in dielectrics or ferro-
electrics, are not allowed). If it is not, an error message is issued
and the components of the field in bulk directions are suppressed au-
tomatically. The input is a vector in Cartesian coordinates, in the
specified units. Example:

%block ExternalElectricField
0.000 0.000 0.500 V/Ang
%endblock ExternalElectricField

Starting with version 4.0, applying an electric field perpendicular to
a slab will by default enable the slab dipole correction, see Slab-
DipoleCorrection. To reproduce older calculations, set this cor-
rection option explicitly to false in the input file.

(logical)
If true, STESTA calculates the electric field required to compensate
the dipole of the system at every iteration of the self-consistent cycle.
The potential added to the grid corresponds to that of a dipole layer
at the middle of the vacuum layer. For slabs, this exactly compen-

71

%Dblock Geometry.Hartree

sates the electric field at the vacuum created by the dipole moment
of the system, thus allowing to treat asymmetric slabs (including sys-
tems with an adsorbate on one surface) and compute properties such
as the work funcion of each of the surfaces.

NOTE: If the program is fed a starting density matrix from an uncor-
rected calculation (i.e., with an exagerated dipole), the first iteration
might use a compensating field that is too big, with the risk of taking
the system out of the convergence basin. In that case, it is advisable
to use the SCF.Mix.First option to request a mix of the input and
output density matrices after that first iteration.

(See Tests/sic-slab)

This will default to true if an external field is applied to a slab
calculation, otherwise it will default to false.

(None) (block)

Allow introduction of regions with changed Hartree potential. Intro-
ducing a potential can act as a repulsion (positive value) or attraction
(negative value) region.

The regions are defined as geometrical objects and there are no limits
to the number of defined geometries.

Currently 4 different kinds of geometries are allowed:

Infinite plane Define a geometry by an infinite plane which cuts the
unit-cell.

This geometry is defined by a single point which is in the plane
and a vector normal to the plane.

This geometry has 3 different settings:
delta An infinite plane with d-height.

gauss An infinite plane with a Gaussian distributed height profile.

exp An infinite plane with an exponentially distributed height pro-
file.

Bounded plane Define a geometric plane which is bounded, i.e. not
infinite.
This geometry is defined by an origo of the bounded plane and two
vectors which span the plane, both originating in the respective

origo. 2.0 0.5 0.2 Ang # The first spanning vector
This geometry has 3 different settings: 0.0 2.5 0.2 Ang # The second spanning vector
. . square 1. eV # The lifting potential on the geometry
delta A plane with d-height. exp 1. 2. Ang # the half-length and the cut-off length
gauss A plane with a Gaussian distributed height profile. 1.01.0 1.0 Ang # The starting point of the square
2.0 0.5 0.2 Ang # The first spanning vector
exp A plane with an exponentially distributed height profile. 0.0 2.5 0.2 Ang # The second spanning vector
box 1. eV # The lifting potential on the geometr
Box This geometry is defined by an origo of the box and three vectors delta &P & y
which span the box, all originating from the respective origo. 1.0 1.0 1.0 Ang # Origo of the box
This geometry has 1 setting;: 2.0 0.5 0.2 Ang # The first spanning vector
. . 0.0 2.5 0.2 Ang # The second spanning vector
Ita N -region i h .
delta No decay-region outside the box 0.0 0.5 3.2 Ang # The third spanning vector
Spheres This geometry is defined by a list of spheres and a common coords 1. eV # The lifting potential on the geometry
radii. gauss 2. 4. Ang # First is std. deviation, second is cut-off
. . . 2 spheres # How many spheres in the following lines
This geometry has 2 settings: 0.0 4. 2. Ang # The centre coordinate of 1. sphere
gauss All spheres have an gaussian distribution about their centre. 1.3 4. 2. Ang # The centre coordinate of 2. sphere
All soh L ial d coords 1. eV # The lifting potential on the geometry
exp spheres have an exponential decay. exp 2. 4. Ang # First is half-length, second is cut-off rad
Here is a list of all options combined in one block: 2 spheres # How many spheres in the following lines
0.0 4. 2. Ang # The centre coordinate of 1. sphere
hblock Geometry.Hartree 1.3 4. 2. Ang # The centre coordinate of 2. sphere
plane 1. eV # The lifting potential on the geometry %endblock Geometry.Hartree
delta
1.0 1.0 1.0 Ang # An intersection point, in the plane %block Geometry.Charge (None) (block)
1 1.0 Ois O\}Q : iie 111??;12.11 vectort’Folthe E}llane . This is similar to the Geometry.Hartree block. However, instead
plane -1l. e e 1 ing potentia on e geometry P . .
gauss 1. 2. Ang # the std. and the cut-off length of specifying a potential, one defines the total charge that is spread
1.0 1.0 1.0 Ang # An intersection point, in the plane on the geometry.
1.0 0.5 0.2 # The normal vector to the plane To see how the input should be formatted, see Geometry.Hartree
plane 1. eV # The lifting potential on the geometry and remove the unit-specification. Note that the input value is num-
exp 1. 2. Ang # the half-length and the cut-off length ber of electrons (similar to NetCharge).
1.0 1.0 1.0 Ang # An intersection point, in the plane
1.0 0.5 0.2 # The normal vector to the plane
square 1. eV # The lifting potential on the geometry 6.22 Qutput of charge densities and potentials on the grid
delta
1.01.0 1.0 Ang # The starting point of the square SIESTA represents these magnitudes on the real-space grid. The fol-
2.0.0.50.2 Ang # The first spanning vector lowing options control the generation of the appropriate files, which
0.0 2.5 0.2 Ang # The second spanning vector
o - can be processed by the programs in the Util/Grid directory, and also
square 1. eV # The lifting potential on the geometry A P Loy’ Tities i . :) g 1
gauss 1. 2. Ang # the std. and the cut-off length by Andrei Postnikov’s utilities in Util/Contrib/APostnikov. See also
1.0 1.0 1.0 Ang # The starting point of the square Util/Denchar for an alternative way to plot the charge density (and

72

SaveRho false

SaveDeltaRho false

SaveRhoXC false

SaveElectrostaticPotential false

wavefunctions).

(logical)
Instructs to write the valence pseudocharge density at the mesh used
by DHSCEF, in file SystemLabel .RHO.

NOTE: file .RHO is only written, not read, by siesta. This file can
be read by routine IORHO, which may be used by other application
programs.

If netCDF support is compiled in, the file Rho.grid.nc is produced.

(logical)
Instructs to write dp(7) = p(7) — patm(7), i.e., the valence pseu-
docharge density minus the sum of atomic valence pseudocharge den-
sities. It is done for the mesh points used by DHSCF and it comes
in file SystemLabel.DRHO. This file can be read by routine IORHO,
which may be used by an application program in later versions.

NOTE: file .DRHO is only written, not read, by siesta.

If netCDF support is compiled in, the file DeltaRho.grid.nc is pro-
duced.

(logical)
Instructs to write the valence pseudocharge density at the mesh, in-
cluding the nonlocal core corrections used to calculate the exchange-
correlation energy, in file SystemLabel.RHOXC.

Use: File .RHOXC is only written, not read, by siesta.

If netCDF support is compiled in, the file RhoXC.grid.nc is pro-
duced.

(logical)
Instructs to write the total electrostatic potential, defined as the sum
of the hartree potential plus the local pseudopotential, at the mesh
used by DHSCF, in file SystemLabel.VH. This file can be read by
routine IORHO, which may be used by an application program in
later versions.

Use: File .VH is only written, not read, by siesta.

If netCDF sup-
port is compiled in, the file ElectrostaticPotential.grid.nc is

73

SaveNeutral AtomPotential

SaveTotalPotential

SavelonicCharge false

produced.

false (logical)
Instructs to write the neutral-atom potential, defined as the sum
of the hartree potential of a “pseudo atomic valence charge” plus
the local pseudopotential, at the mesh used by DHSCF, in file
SystemLabel.VNA. It is written at the start of the self-consistency
cycle, as this potential does not change.

Use: File .VNA is only written, not read, by siesta.

If netCDF support is compiled in, the file Vna.grid.nc is produced.

(logical)
Instructs to write the valence total effective local potential (local
pseudopotential + Hartree + Vxc), at the mesh used by DHSCF, in
file SystemLabel.VT. This file can be read by routine IORHO, which
may be used by an application program in later versions.

false

Use: File .VT is only written, not read, by siesta.

If netCDF support is compiled in, the file TotalPotential.grid.nc
is produced.

NOTE: a side effect; the vacuum level, defined as the effective poten-
tial at grid points with zero density, is printed in the standard output
whenever such points exist (molecules, slabs) and either SaveElec-
trostaticPotential or SaveTotalPotential are true. In a symetric
(nonpolar) slab, the work function can be computed as the difference
between the vacuum level and the Fermi energy.

(logical)
Instructs to write the soft diffuse ionic charge at the mesh used by
DHSCEF, in file SystemLabel.IOCH. This file can be read by rou-
tine IORHO, which may be used by an application program in later
versions. Remember that, within the SIESTA sign convention, the
electron charge density is positive and the ionic charge density is
negative.

Use: File .I0CH is only written, not read, by siesta.

If netCDF support is compiled in, the file Chlocal.grid.nc is pro-
duced.

SaveTotalCharge false (logical)

Instructs to write the total charge density (ionic+electronic) at the
mesh used by DHSCF, in file SystemLabel.TOCH. This file can be
read by routine IORHO, which may be used by an application pro-
gram in later versions. Remember that, within the STESTA sign con-
vention, the electron charge density is positive and the ionic charge
density is negative.

Use: File .TOCH is only written, not read, by siesta.

SaveBaderCharge false (logical)

Instructs the program to save the charge density for further post-
processing by a Bader-analysis program. This “Bader charge” is the
sum of the electronic valence charge density and a set of “model core
charges” placed at the atomic sites. For a given atom, the model
core charge is a generalized Gaussian, but confined to a radius of
1.0 Bohr (by default), and integrating to the total core charge (Z-
Zya1). These core charges are needed to provide local maxima for
the charge density at the atomic sites, which are not guaranteed
in a pseudopotential calculation. For hydrogen, an artificial core
of 1 electron is added, with a confinement radius of 0.6 Bohr by
default. The Bader charge is projected on the grid points of the
mesh used by DHSCF, and saved in file SystemLabel.BADER. This
file can be post-processed by the program Util/grid2cube to convert
it to the “cube” format, accepted by several Bader-analysis programs
(for example, see http://theory.cm.utexas.edu/bader/). Due to
the need to represent a localized core charge, it is advisable to use a
moderately high MeshCutoff when invoking this option (300-500 Ry).
The size of the “basin of attraction” around each atom in the Bader
analysis should be monitored to check that the model core charge is
contained in it.

The radii for the model core charges can be specified in the input fdf
file. For example:

bader-core-radius-standard 1.3 Bohr
bader-core-radius-hydrogen 0.4 Bohr

The suggested way to run the Bader analysis with the Univ. of
Texas code is to use both the RHO and BADER files (both in “cube”
format), with the BADER file providing the “reference” and the RHO

74

file the actual significant valence charge data which is important in
bonding. (See the notes for pseudopotential codes in the above web
page.) For example, for the h2o-pop example:

bader h2o-pop.RHO.cube -ref h2o-pop.BADER.cube

If netCDF support is compiled in, the file BaderCharge.grid.nc is
produced.

AnalyzeChargeDensityOnly false (logical)

If true, the program optionally generates charge density files and
computes partial atomic charges (Hirshfeld, Voronoi, Bader) from
the information in the input density matrix, and stops. This is use-
ful to analyze the properties of the charge density without a diag-
onalization step, and with a user-selectable mesh cutoff. Note that
the DM.UseSaveDM option should be active. Note also that if
an initial density matrix (DM file) is used, it is not normalized. All
the relevant fdf options for charge-density file production and partial
charge calculation can be used with this option.

SavelnitialChargeDensity false (logical)
If true, the program generates a SystemLabel.RHOINIT file (and a
RhoInit.grid.nc file if netCDF support is compiled in) containing
the charge density used to start the first self-consistency step, and it
stops. Note that if an initial density matrix (DM file) is used, it is not
normalized. This is useful to generate the charge density associated
to “partial” DMs, as created by progras such as dm_creator and
dm_filter.

(This option is to be deprecated in favor of AnalyzeChargeDensi-
tyOnly).

6.23 Auxiliary Force field

It is possible to supplement the DFT interactions with a limited set of
force-field options, typically useful to simulate dispersion interactions. It
is not yet possible to turn off DFT and base the dynamics only on the
force field. The GULP program should be used for that.

%block MM.Potentials (None) (block)

http://theory.cm.utexas.edu/bader/

This block allows the input of molecular mechanics potentials be-
tween species. The following potentials are currently implemented:

e C6, C8, C10 powers of the Tang-Toennes damped dispersion
potential.

e A harmonic interaction.

o A dispersion potential of the Grimme type (similar to the C6
type but with a different damping function). (See S. Grimme,
J. Comput. Chem. Vol 27, 1787-1799 (2006)). See also
MM.Grimme.D and MM.Grimme.S6 below.

The format of the input is the two species numbers that are to inter-
act, the potential name (C6, C8, C10, harm, or Grimme), followed
by the potential parameters. For the damped dispersion potentials
the first number is the coefficient and the second is the exponent of
the damping term (i.e., a reciprocal length). A value of zero for the
latter term implies no damping. For the harmonic potential the force
constant is given first, followed by r0. For the Grimme potential C6
is given first, followed by the (corrected) sum of the van der Waals
radii for the interacting species (a real length). Positive values of the
C6, C8, and C10 coefficients imply attractive potentials.

%block MM.Potentials
11C6 32.0 2.0
1 2 harm 3.0 1.4
2 3 Grimme 6.0 3.2
%endblock MM.Potentials

To automatically create input for Grimme’s method, please see the
utility: Util/Grimme which can read an fdf file and create the correct
input for Grimme’s method.

MM.Cutoff 30 Bohr (length)

Specifies the distance out to which molecular mechanics potential will
act before being treated as going to zero.

MM.UnitsEnergy eV (unit)

Specifies the units to be used for energy in the molecular mechanics
potentials.

MM.UnitsDistance Ang (unit)

75

Specifies the units to be used for distance in the molecular mechanics
potentials.

MM.Grimme.D 20.0 (real)

Specifies the scale factor d for the scaling function in the Grimme
dispersion potential (see above).

MM.Grimme.S6 1.66 (real)
Specifies the overall fitting factor sg for the Grimme dispersion po-
tential (see above). This number depends on the quality of the basis
set, the exchange-correlation functional, and the fitting set.

6.24 Parallel options

BlockSize

The orbitals are distributed over the processors when running in par-
allel using a 1-D block-cyclic algorithm. BlockSize is the number
of consecutive orbitals which are located on a given processor before
moving to the next one. Large values of this parameter lead to poor
load balancing, while small values can lead to inefficient execution.
The performance of the parallel code can be optimised by varying
this parameter until a suitable value is found.

(automatic) (integer)

ProcessorY (automatic) (integer)

The mesh points are divided in the Y and Z directions (more precisely,
along the second and third lattice vectors) over the processors in a 2-D
grid. ProcessorY specifies the dimension of the processor grid in the
Y-direction and must be a factor of the total number of processors.
Ideally the processors should be divided so that the number of mesh
points per processor along each axis is as similar as possible.

Defaults to a multiple of number of processors.

(real)

Whether the parallel diagonalisation of a matrix is successful or not
can depend on how much workspace is available to the routine when
there are clusters of eigenvalues. Diag.Memory allows the user to
increase the memory available, when necessary, to achieve successful
diagonalisation and is a scale factor relative to the minimum amount

Diag.Memory 1

of memory that SCALAPACK might need.

Diag.ParallelOverK false (logical)

For the diagonalisation there is a choice in strategy about whether
to parallelise over the K points or over the orbitals. K point diag-
onalisation is close to perfectly parallel but is only useful where the
number of K points is much larger than the number of processors and
therefore orbital parallelisation is generally preferred. The exception
is for metals where the unit cell is small, but the number of K points
to be sampled is very large. In this last case it is recommend that
this option be used.

NOTE: This scheme is not used for the diagonalizations involved in
the generation of the band-structure (as specified with BandLines
or BandPoints) or in the generation of wave-function information
(as specified with WaveFuncKPoints). In these cases the program
falls back to using parallelization over orbitals.

Use: Controls whether the diagonalisation is parallelised with respect
to orbitals or K points — not allowed for non-co-linear spin case.

6.24.1 Parallel decompositions for O(N)

Apart from the default block-cyclic decomposition of the orbital data,
O(N) calculations can use other schemes which should be more efficient:
spatial decomposition (based on atom proximity), and domain decompo-
sition (based on the most efficient abstract partition of the interaction
graph of the Hamiltonian).

UseDomainDecomposition false (logical)
This option instructs the program to employ a graph-partitioning al-
gorithm (using the METIS library (See www.cs.umn.edu/~metis) to
find an efficient distribution of the orbital data over processors. To
use this option (meaningful only in parallel) the program has to be
compiled with the preprocessor option SIESTA__METIS (or the dep-
recated ON_DOMAIN_DECOMP) and the METIS library has to be linked
in.

UseSpatialDecomposition false (logical)

When performing a parallel order N calculation, this option instructs
the program to execute a spatial decomposition algorithm in which
the system is divided into cells, which are then assigned, together
with the orbitals centered in them, to the different processors. The
size of the cells is, by default, equal to the maximum distance at which
there is a non-zero matrix element in the Hamiltonian between two
orbitals, or the radius of the Localized Wannier function - which ever
is the larger. If this is the case, then an orbital will only interact
with other orbitals in the same or neighbouring cells. However, by
decreasing the cell size and searching over more cells it is possible to
achieve better load balance in some cases. This is controlled by the
variable RcSpatial.

NOTE: the distribution algorithm is quite fragile and a careful tun-

ing of RcSpatial might be needed. This option is therefore not
enabled by default.

RcSpatial (maximum orbital range) (length)

Controls the cell size during the spatial decomposition.

6.25 Efficiency options
DirectPhi false (logical)

The calculation of the matrix elements on the mesh requires the value
of the orbitals on the mesh points. This array represents one of the
largest uses of memory within the code. If set to true this option
allows the code to generate the orbital values when needed rather
than storing the values. This obviously costs more computer time
but will make it possible to run larger jobs where memory is the
limiting factor.

This controls whether the values of the orbitals at the mesh points
are stored or calculated on the fly.

6.26 Memory, CPU-time, and Wall time accounting op-

tions

AllocReportLevel 0 (integer)

Sets the level of the allocation report, printed

www.cs.umn.edu/~metis

AllocReportThreshold 0.

TimerReportThreshold 0.

UseTreeTimer

UseParallelTimer true

in file SystemLabel.alloc. However, not all the allocated arrays
are included in the report (this will be corrected in future versions).
The allowed values are:

level 0 : no report at all (the default)

level 1 : only total memory peak and where it occurred

level 2 : detailed report printed only at normal program termi-
nation

e level 3 : detailed report printed at every new memory peak

level 4 : print every individual (re)allocation or deallocation

NOTE: In MPI runs, only node-0 peak reports are produced.
(real)

Sets the minimum size (in bytes) of the arrays whose memory use is
individually printed in the detailed allocation reports (levels 2 and
3). It does not affect the reported memory sums and peaks, which
always include all arrays.

(real)

Sets the minimum fraction, of total CPU time, of the subroutines or
code sections whose CPU time is individually printed in the detailed
timer reports. To obtain the accounting of MPI communication times
in parallel executions, you must compile with option ~-DMPI_TIMING.
In serial execution, the CPU times are printed at the end of the
output file. In parallel execution, they are reported in a separated
file named SystemLabel.times.

(logical)
Enable an experimental timer which is based on wall time on the
master node and is aware of the tree-structure of the timed sections.
NOTE: , if used with the PEXSI solver (see Sec. 6.13) this defaults
to true.

false

(logical)
Determine whether timings are performed in parallel. This may in-

troduce slight overhead.

NOTE: , if used with the PEXSI solver (see Sec. 6.13) this defaults

77

to false.

MaxWalltime Infinity

Set an internal limit to the wall time allotted to the program’s ex-
ecution. Typically this is related to the external limit imposed by
queuing systems. The code checks its wall time periodically and will
abort if nearing the limit, with some slack left for clean-up oper-
ations (proper closing of files, emergency output...), as determined
by MaxWalltime.Slack. See Sec. 16 for available units of time (s,
mins, hours, days).

(real time)

MaxWalltime.Slack 5 s
The code checks its wall time Ty periodically and will abort if
Twanl > Tmax — Tslack, so that some slack is left for any clean-up
operations.

(real time)

6.27 The catch-all option UseSaveData

This is a dangerous feature, and is deprecated, but retained for historical
compatibility. Use the individual options instead.

UseSaveData false (logical)
Instructs to use as much information as possible stored from
previous runs in files SystemLabel.XV, SystemLabel.DM and
SystemLabel.LWF,

NOTE: if the files are not existing it will read the information from

the fdf file.

6.28 Output of information for Denchar

The program denchar in Util/Denchar can generate charge-density and
wavefunction information in real space.

Write.Denchar false (logical)

Instructs to write information needed by the utility program
DENCHAR (by J. Junquera and P. Ordején) to generate va-
lence charge densities and/or wavefunctions in real space (see

Util/Denchar). The information is written in files SystemLabel.PLD
and SystemLabel.DIM.

To run DENCHAR you will need, apart from the .PLD and .DIM files,
the Density-Matrix (DM) file and /or a wavefunction (.WFSX) file, and
the .ion files containing the information about the basis orbitals.

6.29 NetCDF (CDF4) output file

NOTE: this requires SIESTA compiled with CDF4 support.

To unify and construct a simple output file for an entire SIESTA calcu-
lation a generic NetCDF file will be created if SIESTA is compiled with
ncdf support, see Sec. 2.4 and the ncdf section.

Generally all output to NetCDF flags, SaveElectrostaticPotential, etc.
apply to this file as well.

One may control the output file with compressibility and parallel 1/0, if
needed.

CDF.Save false
Create the SystemLabel.nc file which is a NetCDF file.

This file will be created with a large set of groups which make sepa-
rating the quantities easily. Also it will inherently denote the units
for the stored quantities.

(logical)

CDF.Compress 0

Integer between 0 and 9. The former represents no compressing and
the latter is the highest compressing.

(integer)

The higher the number the more computation time is spent on com-
pressing the data. A good compromise between speed and compres-
sion is 3.

NOTE: if one requests parallel I/O (CDF.MPI) this will automat-
ically be set to 0. One cannot perform parallel IO and compress the
data simultaneously.

NOTE: instead of using SIESTA for compression you may compress
after execution by:

nccopy -d 3 -s noncompressed.nc compressed.nc

78

CDF.MPI false (logical)

Write SystemLabel.nc in parallel using MPI for increased perfor-
mance. This has almost no memory overhead but may for very large
number of processors saturate the file-system.

NOTE: this is an experimental flag.

CDF.Grid.Precision (string)

At which precision should the real-space grid quantities be stored,
such as the density, electrostatic potential etc.

single|double

7 STRUCTURAL RELAXATION, PHONONS,
AND MOLECULAR DYNAMICS

This functionality is not STESTA-specific, but is implemented to provide
a more complete simulation package. The program has an outer geom-
etry loop: it computes the electronic structure (and thus the forces and
stresses) for a given geometry, updates the atomic positions (and maybe
the cell vectors) accordingly and moves on to the next cycle. If there are
molecular dynamics options missing you are highly recommend to look
into MD.TypeOfRun.Lua or MD.TypeOfRun.Master.

Several options for MD and structural optimizations are implemented,
selected by

MD.TypeOfRun CG (string)

CG Coordinate optimization by conjugate gradients). Optionally (see
variable MD.VariableCell below), the optimization can include
the cell vectors.

Broyden Coordinate optimization by a modified Broyden scheme).
Optionally, (see variable MD.VariableCell below), the optimiza-
tion can include the cell vectors.

FIRE Coordinate optimization by Fast Inertial Relaxation Engine
(FIRE) (E. Bitzek et al, PRL 97, 170201, (2006)). Optionally, (see
variable MD.VariableCell below), the optimization can include
the cell vectors.

Verlet Standard Verlet algorithm MD
Nose MD with temperature controlled by means of a Nosé thermostat

ParrinelloRahman MD with pressure controlled by the Parrinello-
Rahman method

NoseParrinelloRahman MD with temperature controlled by means
of a Nosé thermostat and pressure controlled by the Parrinello-
Rahman method

Anneal MD with annealing to a desired temperature and/or pressure
(see variable MD.AnnealOption below)

FC Compute force constants matrix for phonon calculations.

Master|Forces Receive coordinates from, and return forces to, an
external driver program, using MPI, Unix pipes, or Inet sock-
ets for communication. The routines in module fsiesta allow
the user’s program to perform this communication transparently,
as if SIESTA were a conventional force-field subroutine. See
Util/SiestaSubroutine/README for details. WARNING: if this
option is specified without a driver program sending data, siesta
may hang without any notice.

See directory Util/Scripting for other driving options.

Lua Fully control the MD cycle and convergence path using an ex-
ternal Lua script.
With an external Lua script one may control nearly everything
from a script. One can query any internal data-structures in
SIESTA and, similarly, return any data thus overwriting the in-
ternals. A list of ideas which may be implemented in such a Lua
script are:

e New geometry relaxation algorithms
o NEB calculations
e New MD routines

o Convergence tests of MeshCutoff and
kgrid.MonkhorstPack, or other parameters (currently basis
set optimizations cannot be performed in the Lua script).

Sec. 9 for additional details (and a description of flos which im-

79

plements some of the above mentioned items).

Using this option requires the compilation of SIESTA with the
flook library.If SIESTA is not compiled as prescribed in Sec. 2.4
this option will make SIESTA die.

NOTE: if Compat.Pre-v4-Dynamics is true this will default to
Verlet.

Note that some options specified in later variables (like quenching)
modify the behavior of these MD options.

Appart from being able to act as a force subroutine for a driver
program that uses module fsiesta,
SIESTA is also prepared to communicate with the i-PI code (see
http://epfl-cosmo.github.io/gled4md/index.html?page=ipi).
To do this, STESTA must be started after i-PI (it acts as a client of
i-PI, communicating with it through Inet or Unix sockets), and the
following lines must be present in the .fdf data file:

MD.TypeOfRun Master # equivalent to ’Forces’
Master.code i-pi # (fsiesta | i-pi)
Master.interface socket # (pipes | socket | mpi)
Master.address localhost # or driver’s IP, e.g. 150.242.7
Master.port 10001 # 10000+siesta_process_order
Master.socketType inet # (inet | unix)

7.1 Compatibility with pre-v4 versions

Starting in the summer of 2015, some changes were made to the behavior
of the program regarding default dynamics options and choice of coor-
dinates to work with during post-processing of the electronic structure.
The changes are:

e The default dynamics option is “CG” instead of “Verlet”.

e The coordinates, if moved by the dynamics routines, are reset to
their values at the previous step for the analysis of the electronic
structure (band structure calculations, DOS, LDOS, etc).

e Some output files reflect the values of the “un-moved” coordinates.

e The
default convergence criteria is now both density and Hamiltonian
convergence, see SCF.DM.Converge and SCF.H.Converge.

To recover the previous behavior, the user can turn on the compatibility
switch Compat.Pre-v4-Dynamics, which is off by default.

Note that complete compatibility cannot be perfectly guaranteed.

7.2 Structural relaxation

In this mode of operation, the program moves the atoms (and optionally
the cell vectors) trying to minimize the forces (and stresses) on them.

These are the options common to all relaxation methods. If the Zmatrix
input option is in effect (see Sec. 6.4.2) the Zmatrix-specific options take
precedence. The '"MD’ prefix is misleading but kept for historical reasons.

MD.VariableCell false (logical)

If true, the lattice is relaxed together with the atomic coordinates. It
allows to target hydrostatic pressures or arbitrary stress tensors. See
MD.MaxStressTol, MD.TargetPressure, MD.TargetStress,
MD.ConstantVolume, and MD.PreconditionVariableCell.
NOTE: only compatible with MD.TypeOfRun CG, Broyden or
fire.

MD.ConstantVolume false (logical)
If true, the cell volume is kept constant in a variable-cell relaxation:
only the cell shape and the atomic coordinates are allowed to change.
Note that it does not make much sense to specify a target stress or
pressure in this case, except for anisotropic (traceless) stresses. See
MD.VariableCell, MD.TargetStress.

NOTE: only compatible with MD.TypeOfRun CG, Broyden or
fire.

MD.RelaxCellOnly false (logical)

If true, only the cell parameters are relaxed (by the Broyden or
FIRE method, not CG). The atomic coordinates are re-scaled to the
new cell, keeping the fractional coordinates constant. For Zmatrix

calculations, the fractional position of the first atom in each molecule
is kept fixed, and no attempt is made to rescale the bond distances
or angles.

NOTE: only compatible with MD.TypeOfRun Broyden or fire.

MD.MaxForceTol 0.04eV/Ang (force)

Force tolerance in coordinate optimization. Run stops if the
maximum atomic force is smaller than MD.MaxForceTol (see
MD.MaxStressTol for variable cell).

MD.MaxStressTol 1GPa (pressure)

Stress tolerance in variable-cell CG optimization. Run stops if the
maximum atomic force is smaller than MD.MaxForceTol and the
maximum stress component is smaller than MD.MaxStressTol.

Special consideration is needed if used with Sankey-type basis sets,
since the combination of orbital kinks at the cutoff radii and the finite-
grid integration originate discontinuities in the stress components,
whose magnitude depends on the cutoff radii (or energy shift) and the
mesh cutoff. The tolerance has to be larger than the discontinuities
to avoid endless optimizations if the target stress happens to be in a
discontinuity.

MD.NumCGsteps 0 (integer)

Maximum number of conjugate gradient (or Broyden) minimization
moves (the minimization will stop if tolerance is reached before; see
MD.MaxForceTol below).

MD.MaxCGDispl 0.2 Bohr (length)

Maximum atomic displacements in an optimization move.

In the Broyden optimization method, it is
also possible to limit indirectly the initial atomic displacements using
MD.Broyden.Initial.Inverse.Jacobian. For the FIRE method,
the same result can be obtained by choosing a small time step.

Note that there are Zmatrix-specific options that override this option.

MD.PreconditionVariableCell 5 Ang (length)

A length to multiply to the strain components in a variable-cell op-
timization. The strain components enter the minimization on the

same footing as the coordinates. For good efficiency, this length
should make the scale of energy variation with strain similar to the
one due to atomic displacements. It is also used for the application
of the MD.MaxCGDispl value to the strain components.

ZM.ForceTolLength 0.00155574 Ry /Bohr (force)

Parameter that controls the convergence with respect to forces on
Z-matrix lengths

ZM.ForceTolAngle 0.00356549 Ry /rad (torque)

Parameter that controls the convergence with respect to forces on
Z-matrix angles

ZM.MaxDisplLength 0.2 Bohr (length)

Parameter that controls the maximum change in a Z-matrix length
during an optimisation step.

ZM.MaxDisplAngle 0.003rad (angle)

Parameter that controls the maximum change in a Z-matrix angle
during an optimisation step.

7.2.1 Conjugate-gradients optimization

This was historically the default geometry-optimization method, and all
the above options were introduced specifically for it, hence their names.
The following pertains only to this method:

MD.UseSaveCG false (logical)

Instructs to read the conjugate-gradient hystory information stored
in file SystemLabel.CG by a previous run.

NOTE: to get actual continuation of iterrupted CG runs, use to-
gether with MD.UseSaveXV true with the .XV file generated in
the same run as the CG file. If the required file does not exist, a
warning is printed but the program does not stop. Overrides Us-
eSaveData.

NOTE: no such feature exists yet for a Broyden-based relaxation.

81

7.2.2 Broyden optimization

It uses the modified Broyden algorithm to build up the Jacobian matrix.
(See D.D. Johnson, PRB 38, 12807 (1988)). (Note: This is not BFGS.)

MD.Broyden.History.Steps 5 (integer)

Number of relaxation steps during which the modified Broyden algo-
rithm builds up the Jacobian matrix.

MD.Broyden.Cycle.On.Maxit true (logical)

Upon reaching the maximum number of history data sets which are
kept for Jacobian estimation, throw away the oldest and shift the
rest to make room for a new data set. The alternative is to re-start
the Broyden minimization algorithm from a first step of a diagonal
inverse Jacobian (which might be useful when the minimization is
stuck).

MD.Broyden.Initial.Inverse.Jacobian 1 (real)

Initial inverse Jacobian for the optimization procedure. (The units
are those implied by the internal Siesta usage. The default value
seems to work well for most systems.

7.2.3 FIRE relaxation

Implementation of the Fast Inertial Relaxation Engine (FIRE) method (E.
Bitzek et al, PRL 97, 170201, (2006) in a manner compatible with the CG
and Broyden modes of relaxation. (An older implementation activated by
the MD.FireQuench variable is still available).

MD.FIRE.TimeStep (MD.LengthTimeStep) (time)

The (fictitious) time-step for FIRE relaxation. This is the main user-
variable when the option FIRE for MD.TypeOfRun is active.

NOTE: the default value is encouraged to be changed as the link to
MD.LengthTimeStep is misleading.

There are other low-level options tunable by the user (see the routines
fire_optim and cell_fire_optim for more details.

7.3 Target stress options tal stresses are printed in addition to the uncorrected items. The
corrected Voigt form is also printed.
Useful for structural optimizations and constant-pressure molecular dy-

namics.

MD.TargetPressure 0GPa (pressure)

Target pressure for Parrinello-Rahman method, variable cell opti-
mizations, and annealing options.

NOTE: this is only compatible with MD.TypeOfRun Parrinel-
loRahman, NoseParrinelloRahman, CG, Broyden or FIRE
(variable cell), or Anneal (if MD.AnnealOption Pressure or
TemperatureandPressure).

%block MD.TargetStress —1 —1— 1000 (block)

External or target stress tensor for variable cell optimizations. Stress
components are given in a line, in the order xx, yy, zz, xy, xz,
yz. In units of MD.TargetPressure, but with the opposite sign.
For example, a uniaxial compressive stress of 2 GPa along the 100
direction would be given by

MD.TargetPressure 2. GPa
%block MD.TargetStress

-1.0 0.0 0.0 0.0 0.0 0.0
%endblock MD.TargetStress

Only used if MD.TypeOfRun is CG, Broyden or FIRE and
MD.VariableCell is true.

MD.RemovelntramolecularPressure false (logical)

If true, the contribution to the stress coming from the internal de-
grees of freedom of the molecules will be subtracted from the stress
tensor used in variable-cell optimization or variable-cell molecular-
dynamics. This is done in an approximate manner, using the virial
form of the stress, and assumming that the “mean force” over the co-
ordinates of the molecule represents the “inter-molecular” stress. The
correction term was already computed in earlier versions of STESTA
and used to report the “molecule pressure”. The correction is now
computed molecule-by-molecule if the Zmatrix format is used.

If the intra-molecular stress is removed, the corrected static and to-

82

7.4 Molecular dynamics

In this mode of operation, the program moves the atoms (and optionally
the cell vectors) in response to the forces (and stresses), using the classical
equations of motion.

Note that the Zmatrix input option (see Sec. 6.4.2) is not compatible
with molecular dynamics. The initial geometry can be specified using
the Zmatrix format, but the Zmatrix generalized coordinates will not be
updated.

MD.InitialTimeStep 1 (integer)

Initial time step of the MD simulation. In the current version of
SIESTA it must be 1.

Used only if MD.TypeOfRun is not CG or Broyden.

MD.FinalTimeStep 1 (integer)
Final time step of the MD simulation.

MD.LengthTimeStep 1fs (time)
Length of the time step of the MD simulation.

MD.InitialTemperature 0K (temperature/energy)
Initial temperature for the MD run. The atoms are assigned random
velocities drawn from the Maxwell-Bolzmann distribution with the
corresponding temperature. The constraint of zero center of mass
velocity is imposed.

NOTE: only used if MD.TypeOfRun Verlet, Nose, Parrinel-
loRahman, NoseParrinelloRahman or Anneal.

MD.TargetTemperature 0K (temperature/energy)
Target temperature for Nose thermostat and annealing options.

NOTE: only used if MD.TypeOfRun Nose, NoseParrinel-
loRahman or Anneal if MD.AnnealOption is Temperature or
TemperatureandPressure.

MD.NoseMass 100 Ry fs? (moment of inertia)

Generalized mass of Nose variable. This determines the time scale of
the Nose variable dynamics, and the coupling of the thermal bath to
the physical system.

Only used for Nose MD runs.

MD.ParrinelloRahmanMass 100 Ry fs? (moment of inertia)
Generalized mass of Parrinello-Rahman variable. This determines
the time scale of the Parrinello-Rahman variable dynamics, and its
coupling to the physical system.

Only used for Parrinello-Rahman MD runs.

MD.AnnealOption TemperatureAndPressure (string)

Type of annealing MD to perform. The target temperature or pres-
sure are achieved by velocity and unit cell rescaling, in a given time
determined by the variable MD.TauRelax below.

Temperature Reach a target temperature by velocity rescaling

Pressure Reach a target pressure by scaling of the unit cell size and
shape

TemperatureandPressure Reach a target temperature and pres-
sure by velocity rescaling and by scaling of the unit cell size and
shape

Only applicable for MD.TypeOfRun Anneal.

MD.TauRelax 100fs (time)

Relaxation time to reach target temperature and/or pressure in an-
nealing MD. Note that this is a “relaxation time”, and as such it gives
a rough estimate of the time needed to achieve the given targets. As
a normal simulation also exhibits oscillations, the actual time needed
to reach the averaged targets will be significantly longer.

Only applicable for MD.TypeOfRun Anneal.

MD.BulkModulus 100 Ry/Bohr? (pressure)
Estimate (may be rough) of the bulk modulus of the system. This is
needed to set the rate of change of cell shape to reach target pressure
in annealing MD.

Only applicable for MD.TypeOfRun Anneal, when
MD.AnnealOption is Pressure or TemperatureAndPressure

7.5 Output options for dynamics

Every time the atoms move, either during coordinate relaxation or molec-
ular dynamics, their positions predicted for next step and current
velocities are stored in file SystemLabel.XV. The shape of the unit cell
and its associated ’velocity’ (in Parrinello-Rahman dynamics) are also
stored in this file.

WriteCoorlnitial true (logical)

It determines whether the initial atomic coordinates of the simula-
tion are dumped into the main output file. These coordinates cor-
respond to the ones actually used in the first step (see the section
on precedence issues in structural input) and are output in Cartesian
coordinates in Bohr units.

It is not affected by the setting of LongOutput.

WriteCoorStep false (logical)
If true, it writes the atomic coordinates to standard output at every
MD time step or relaxation step. The coordinates are always written
in the SystemLabel.XV file, but overriden at every step. They can

be also accumulated in the .MD or SystemLabel.MDX files depending
on WriteMDHistory.

WriteForces false (logical)

If true, it writes the atomic forces to the output file at every MD
time step or relaxation step. Note that the forces of the last step can
be found in the file SystemLabel.FA. If constraints are used, the file
SystemLabel .FAC is also written.

WriteMDHistory false (logical)

If true, STESTA accumulates the molecular dynamics trajectory in
the following files:

o SystemLabel.MD : atomic coordinates and velocities (and lat-
tice vectors and their time derivatives, if the dynamics implies

83

variable cell). The information is stored unformatted for post-
processing with utility programs to analyze the MD trajectory.

e SystemLabel.MDE : shorter description of the run, with energy,
temperature, etc., per time step.

These files are accumulative even for different runs.

The trajectory of a molecular dynamics run (or a conjugate gra-
dient minimization) can be accumulated in different files: System-
Label.MD, SystemLabel. MDE, and SystemLabel. ANI. The first file
keeps the whole trajectory information, meaning positions and ve-
locities at every time step, including lattice vectors if the cell varies.
NOTE that the positions (and maybe the cell vectors) stored at each
time step are the predicted values for the next step. Care should be
taken if joint position-velocity correlations need to be computed from
this file. The second gives global information (energy, temperature,
etc), and the third has the coordinates in a form suited for XMol
animation. See the WriteMDHistory and WriteMDXmol data
descriptors above for information. SIESTA always appends new in-
formation on these files, making them accumulative even for different
runs.

The iomd subroutine can generate both an unformatted file .MD (de-
fault) or ASCII formatted files .MDX and .MDC containing the atomic
and lattice trajectories, respectively. Edit the file to change the set-
tings if desired.

7.6 Restarting geometry optimizations and MD runs

Every time the atoms move, either during coordinate relaxation or molec-
ular dynamics, their positions predicted for next step and current
velocities are stored in file SystemLabel. XV, where SystemLabel is the
value of that FDF descriptor (or ’siesta’ by default). The shape of the
unit cell and its associated ’velocity’ (in Parrinello-Rahman dynamics)
are also stored in this file. For MD runs of type Verlet, Parrinello-
Rahman, Nose, Nose-Parrinello-Rahman, or Anneal, a file named Sys-
temLabel. VERLET RESTART, SystemLabel. PR__RESTART, System-
Label. NOSE__RESTART, SystemLabel. NPR__RESTART, or SystemLa-
be., ANNEAL_ RESTART, respectively, is created to hold the values of

auxiliary variables needed for a completely seamless continuation.

If the restart file is not available, a simulation can still make use of the
XV information, and “restart” by basically repeating the last-computed
step (the positions are shifted backwards by using a single Euler-like step
with the current velocities as derivatives). While this feature does not
result in seamless continuations, it allows cross-restarts (those in which a
simulation of one kind (e.g., Anneal) is followed by another (e.g., Nose)),
and permits to re-use dynamical information from old runs.

This restart fix is not satisfactory from a fundamental point of view, so
the MD subsystem in Siesta will have to be redesigned eventually. In
the meantime, users are reminded that the scripting hooks being steadily
introduced (see Util/Scripting) might be used to create custom-made MD
scripts.

7.7 Use of general constraints

Note: The Zmatrix format (see Sec. 6.4.2) provides an alternative con-
straint formulation which can be useful for system involving molecules.

(None) (block)
Constrains certain atomic coordinates or cell parameters in a consis-
tent method.

There are a high number of configurable parameters that may be
used to control the relaxation of the coordinates.

NOTE: SIESTA prints out a small section of how the constraints
are recognized.

%block Geometry.Constraints

atom|position Fix certain atomic coordinates.

This option takes a variable number of integers which each corre-
spond to the atomic index (or input sequence) in AtomicCoor-
dinatesAndAtomicSpecies.

atom is now the preferred input option while position still works
for backwards compatibility.

One may also specify ranges of atoms according to:

atom A [B [C [...]]] A sequence of atomic indices which are con-
strained.

atom from A to B [step s| Here atoms A up to and including B
are constrained. If step <s> is given, the range A:B will be
taken in steps of s.

atom from 3 to 10 step 2
will constrain atoms 3, 5, 7 and 9.

atom from A plus/minus B [step s] Here atoms A up to and
including A + B — 1 are constrained. If step <s> is given, the
range A:A + B — 1 will be taken in steps of s.

atom [A, B -- C [step s|, D] Equivalent to from ...to speci-
fication, however in a shorter variant. Note that the list may
contain arbitrary number of ranges and/or individual indices.

atom [2, 3 -- 10 step 2, 6]

will constrain atoms 2, 3, 5, 7, 9 and 6.

atom [2, 3 -- 6, 8]

will constrain atoms 2, 3, 4, 5, 6 and 8.

atom all Constrain all atoms.

NOTE: these specifications are apt for directional constraints.

Z Equivalent to atom with all indices of the atoms that have atomic
number equal to the specified number.

NOTE: this specification is apt for directional constraints.

species-i Equivalent to atom with all indices of the atoms that have
species according to the ChemicalSpeciesLabel and Atomic-
CoordinatesAnd AtomicSpecies.

NOTE: this specification is apt for directional constraints.

center One may retain the coordinate center of a range of atoms (say
molecules or other groups of atoms).

Atomic indices may be specified according to atom.
NOTE: this specification is apt for directional constraints.

rigid|molecule Move a selection of atoms together as though they
where one atom.
The forces are summed and averaged to get a net-force on the
entire molecule.

85

Atomic indices may be specified according to atom.

NOTE: this specification is apt for directional constraints.

rigid-max|molecule-max Move a selection of atoms together as
though they where one atom.

The maximum force acting on one of the atoms in the selection
will be expanded to act on all atoms specified.

Atomic indices may be specified according to atom.

cell-angle Control whether the cell angles («, 3,) may be altered.

This takes either one or more of alpha/beta/gamma as argu-
ment.

alpha is the angle between the 2nd and 3rd cell vector.
beta is the angle between the 1st and 3rd cell vector.
gamma is the angle between the 1st and 2nd cell vector.

NOTE: currently only one angle can be constrained at a time and
it forces only the spanning vectors to be relaxed.

cell-vector Control whether the cell vectors (A, B, C) may be al-
tered.

This takes either one or more of A/B/C as argument.

Constraining the cell-vectors are only allowed if they only have a
component along their respective Cartesian direction. I.e. B must
only have a y-component.

stress Control which of the 6 stress components are constrained.

This takes a number of integers 1 < ¢ < 6 where 1 corresponds
to the AA stress-component, 2 is BB, 3 is CC, 4 is BC/CB, 5 is
AC/CA and 6 is AB/BA.

routine This calls the constr routine specified in the file: constr.f.
Without having changed the corresponding source file, this does
nothing. See details and comments in the source-file.

clear Remove constraints on selected atoms from all previously spec-
ified constraints.
This may be handy when specifying constraints via Z or species-i.
Atomic indices may be specified according to atom.

clear-prev Remove constraints on selected atoms from the previous
specified constraint.

This may be handy when specifying constraints via Z or species-i.
Atomic indices may be specified according to atom.

NOTE: two consecutive clear-prev may be used in conjunction
as though the atoms where specified on the same line.

It is instructive to give an example of the input options presented.
Consider a benzene molecule (CgHg) and we wish to relax all Hydro-
gen atoms. This may be accomplished in this fashion

%block Geometry.Constraints
Z6
%endblock

Or as in this example

%block AtomicCoordinatesAndAtomicSpecies
.1 #cC1

© 00 ~NO O WN

NP, N, NFRLRNRFRNDRN
H OHF H H HF H H EF H HH
o
= O

mTQ@mQEmaa@maamaQm

e
N

%endblock

%block Geometry.Constraints
atom from 1 to 12 step 2

%endblock

%block Geometry.Constraints
atom [1 -- 12 step 2]

%endblock
%block Geometry.Constraints
atom all
clear-prev [2 -- 12 step 2]
%endblock

where the 3 last blocks all create the same result.

86

MD.FCDispl

MD.FCFirst 1

Finally, the directional constraint is an important and often useful
feature. When relaxing complex structures it may be advantageous
to first relax along a given direction (where you expect the stress
to be largest) and subsequently let it fully relax. Another example
would be to relax the binding distance between a molecule and a
surface, before relaxing the entire system by forcing the molecule
and adsorption site to relax together. To use directional constraint
one may provide an additional 3 reals after the atom/rigid. For
instance in the previous example (benzene) one may first relax all
Hydrogen atoms along the y and z Cartesian vector by constraining
the z Cartesian vector

%block Geometry.Constraints
Z61.0.0.
%endblock

Note that you must append a “” to denote it a real. The vector spec-
ified need not be normalized. Also, if you want it to be constrained
along the x-y vector you may do

%block Geometry.Constraints
Z61.1.0.
%endblock

7.8 Phonon calculations

If MD.TypeOfRun is FC, SIESTA sets up a special outer geometry
loop that displaces individual atoms along the coordinate directions to
build the force-constant matrix.

The output (see below) can be analyzed to extract phonon frequencies
and vectors with the VIBRA package in the Util/Vibra directory. For
computing the Born effective charges together with the force constants,
see BornCharge.

0.04 Bohr (length)

Displacement to use for the computation of the force constant matrix
for phonon calculations.

(integer)

Index of first atom to displace for the computation of the force con-
stant matrix for phonon calculations.

MD.FCLast (MD.FCFirst)

Index of last atom to displace for the computation of the force con-
stant matrix for phonon calculations.

(integer)

The force-constants matrix is written in file SystemLabel.FC. The format
is the following: for the displacement of each atom in each direction, the
forces on each of the other atoms is writen (divided by the value of the
displacement), in units of eV/ A2, Each line has the forces in the z, y and
z direction for one of the atoms.

If constraints are used, the file SystemLabel .FCC is also written.

8 LDA+U

Important note: Current implementation is based on the simplified rota-
tionally invariant LDA+U formulation of Dudarev and collaborators [see,
Dudarev et al., Phys. Rev. B 57, 1505 (1998)]. Although the input allows
to define independent values of the U and J parameters for each atomic
shell, in the actual calculation the two parameters are combined to pro-
duce an effective Coulomb repulsion Ugg = U — J. Uegg is the parameter
actually used in the calculations for the time being.

For large or intermediate values of U the convergence is sometimes diffi-
cult. A step-by-step increase of the value of Usg can be advisable in such
cases.

Currently, the LDA+U implementation does not support non-colinear,
nor spin-orbit coupling.

LDAU.ProjectorGenerationMethod 2 (integer)

Generation method of the LDA+U projectors. The LDA+U projec-
tors are the localized functions used to calculate the local populations
used in a Hubbard-like term that modifies the LDA Hamiltonian and
energy. It is important to recall that LDA+U projectors should be
quite localized functions. Otherwise the calculated populations loose
their atomic character and physical meaning. Even more importantly,

87

LDAU.EnergyShift 0.05Ry

LDAU.Cutoff Norm 0.9

%block LDAU.Proj

the interaction range can increase so much that jeopardizes the effi-
ciency of the calculation.

Two methods are currently implemented:

1 Projectors are slightly-excited numerical atomic orbitals similar to
those used as an automatic basis set by SIESTA. The radii of these
orbitals are controlled using the parameter LDAU.EnergyShift
and/or the data included in the block LDAU.Proj (quite similar
to the data block PAQO.Basis used to specify the basis set, see
below).

2 Projectors are exact solutions of the pseudoatomic problem (and,
in principle, are not strictly localized) which are cut using a Fermi
function 1/{1 + exp[(r — rc)w]}. The values of r. and w are con-
trolled using the parameter LDAU.CutoffNorm and/or the data
included in the block LDAU.Proj.

(energy)
Energy increase used to define the localization radius of the LDA+4U
projectors (similar to the parameter PAO.EnergyShift).

NOTE: only used when LDAU.ProjectorGenerationMethod is
1.

(real)
Parameter used to define the value of r. used in the Fermi distribu-
tion to cut the LDA4U projectors generated according to generation
method 2 (see above). LDAU.CutoffNorm is the norm of the orig-
inal pseudoatomic orbital contained inside a sphere of radius equal
to 7.

NOTE: only used when LDAU.ProjectorGenerationMethod is
2.

(None)
Data block used to specify the LDA+U projectors.

(block)

o If LDAU.ProjectorGenerationMethod is 1, the syntax is

as follows:
%block LDAU.Proj # Define LDA+U projectors
Fe 2 # Label, 1_shells

n=3 2 E 50.0 2.5 # n (opt if not using semicore levels) (Igfvftgencdoptierium for the LDA+U local populations. In the
5.00 0.35 # U(eV), J(eV) for this shell current implementation the Hubbard-like term of the Hamiltonian is
2.30 # rc (Bohr) only updated (except for the last iteration) if the variations of the
3'95 : ScaieFaCtor (opt) local populations are larger than this value.
1.00 0.05 # U(eV), J(eV) for this shell LDAU.PotentialShift false (logical)
0.00 #

rc(Bohr) (if 0, automatic r_c from LDAU.EnergyShift . . .
- % set to true, tiqe value given to the U parameter in the input file

is interpreted as a local potential shift. Recording the change of the
local populations as a function of this potential shift, we can calculate

hendblock LDAU.Proj
e If LDAU.ProjectorGenerationMethod is 2, the syntax is

as follows: the appropriate value of U for the system under study following the
%block LDAU.Proj # Define LDAU projectors methology proposed by Cococcioni and Gironcoli in Phys. Rev. B
Fe 2 # Label, 1_shells 71, 035105 &2005)
n=3 2 E 50.0 2.5 # n (opt if not using semicore levels),l,Softconf (opt)
5.00 0.35 # U(eV), J(eV) for this shell
ooy O . ZZQEEZQ;Q‘Z’SE%?(B°“) (Fermi cgpoflfER&IRAl control of SIESTA
0 # 1
1.00 0.05 # U(eV), J(eV) for this shell Since SIESTA 4.1 an additional method of controlling the convergence
0.00 0.00 # rc(Bohr), \omega(Bohr) (if O r_cfxpm[EPAY SHESIFMotmenabled through external scripting capability. The
hendblock LDAU.Proj # and \omegat£rm ITAYSE BHESIn two variants:

Certain of the quantites have default values:

U 0.0 eV o Implicit control of MD through updating/changing parameters and

J 0.0 eV optimizing forces. For instance one may use a Verlet MD method

w 0.05 Bohr but additionally update the forces through some external force-field

Scale factor 1.0 to amend limitations by the Verlet method for your particular

ro depends on LDAU.EnergyShift or LDAU.CutoffNorm de- lc)aseS.IEI;; %1:3 implicit control the molecular dynamics is controlled
v .

pending on the generation method.

LDAU.FirstIteration false (logical) o Explicit control of MD. In this mode the molecular dynamics must
be controlled in the external Lua script and the convergence of the

If t local lati lculated and Hubbard-like t i
riie, fotal boptialiohs ate calcttianed and HUbbard-ixe tetii 15 geometry should also be controlled via this script.

switch on in the first iteration. Useful if restarting a calculation

reading a converged or an almost converged density matrix from file.
& & & Y The implicit control is in use if MD.TypeOfRun is something other

LDAU.ThresholdTol 0.01 (real) than lua, while if the option is lua the explicit control is in use.

Local populations only calculated and/or updated if the change in For examples on the usage of the Lua scripting engine and the power you

the density matrix elements (dDmax) is lower than may find the library flos”, see https://github.com/siesta-project/
LDAU.ThresholdTol.

"This library is implemented by Nick R. Papior to further enhance the inter-
LDAU.PopTol 0.001 (real) operability with STESTA and external contributions.

88

https://github.com/siesta-project/flos
https://github.com/siesta-project/flos
https://github.com/siesta-project/flos

flos. At the time of writing the flos library already implements new ge-
ometry/cell relaxation schemes and new force-constants algorithms. You
are highly encouraged to use the new relaxation schemes as they may
provide faster convergence of the relaxation.

Lua.Script (none) (file)
Specify a Lua script file which may be used to control the internal
variables in SIESTA. Such a script file must contain at least one
function named siesta_comm with no arguments.

An example file could be this (note this is Lua code):
-- This function (siesta_comm) is REQUIRED

function siesta_comm()

—- Define which variables we want to retrieve from SIESTA
get_tbl = {"geom.xa", "E.total"}

-- Signal to SIESTA which variables we want to explore
siesta.receive(get_tbl)

-- Now we have the required variables,
-- convert to a simpler variable name (not nested tables)

Initialization This is right after STIESTA has read the options from
the FDF file. Here you may query some of the FDF options (and
even change them) for your particular problem.

NOTE: siesta.state == siesta.INITIALIZE.

Initialize-MD Right before the SCF step starts. This point is some-
what superfluous, but is necessary to communicate the actual
meshcutoff used®.

NOTE: siesta.state == siesta.INIT_MD.

SCF Right after SIESTA has calculated the output density matrix,
and just after SIESTA has performed mixing.

NOTE: siesta.state == siesta.SCF_L0OOP.

Forces This stage is right after STESTA has calculated the forces.
NOTE: siesta.state == siesta.FORCES.

Move This state will only be reached if MD.TypeOfRun is lua.

If one does not return updated atomic coordinates SIESTA will
reuse the same geometry as just analyzed.

NOTE: siesta.state == siesta.MOVE.

-- (note the returned quantities are in SIESTA units (Bohr, RAnalysis Just before SIESTA completes and exits.

xa = siesta.geom.xa
Etot = siesta.E.total

-- If we know our energy is wrong by 0.001 Ry we may now
-- change the total energy
Etot = Etot - 0.001

-- Return to SIESTA the total energy such that
-- it internally has the "correct" energy.

siesta.E.total = Etot
ret_tbl = {"E.total"}

siesta.send(ret_tbl)

end

Within this function there are certain states which defines different

NOTE: siesta.state == siesta.ANALYSIS.

Beginning with implementations of Lua scripts may be cumbersome.
It is recommended to start by using flos, see https://github.com/
siesta-project/flos which contains several examples on how to
start implementing your own scripts. Currently flos implements a
larger variety of relaxation schemes, for instance:

local flos = require "flos"
LBFGS = flos.LBFGS()
function siesta_comm()

LBFGS:SIESTA(siesta)
end

which is the most minimal example of using the L-BFGS algo-
rithm for geometry relaxation. Note that flos reads the parame-
ters MD.MaxCGDispl and MD.MaxForceTol through STESTA

execution points in SIESTA:

89

8Remember that the MeshCutoff defined is the minimum cutoff used.

https://github.com/siesta-project/flos
https://github.com/siesta-project/flos
https://github.com/siesta-project/flos

automatically.

NOTE: The number of available variables continues to grow and to
find which quantities are accessible in Lua you may add this small
code in your Lua script:

siesta.print_allowed()

which prints out a list of all accessible variables (note they are not
sorted).

If there are any variables you require which are not in the list, please
contact the developers.

Remark that since anything may be changed via Lua one may easily
make SIESTA crash due to inconsistencies in the internal logic. This
is because SIESTA does not check what has changed, it accepts
everything as is and continues. Hence, one should be careful what is
changed.

(logical)
Debug the Lua script mode by printing out (on stdout) information
everytime SIESTA communicates with Lua.

Lua.Debug false

Lua.Debug.MPI false
Debug all nodes (if in a parallel run).

(logical)

9.1 Examples of Lua programs

Please look in the Tests/lua_x* folders where examples of basic Lua
scripts are found. Below is a description of the * examples.

h20 Changes the mixing weight continuously in the SCF loop. This will
effectively speed up convergence time if one can attain the best
mixing weight per SCF-step.

si111 Change the mixing method based on certain convergence criteria.
L.e. after a certain convergence one can switch to a more aggressive
mixing method.

A combination of the above two examples may greatly improve conver-
gence, however, creating a generic method to adaptively change the mixing

90

parameters may be very difficult to implement. If you do create such a
Lua script, please share it on the mailing list.

10 TRANSIESTA

SIESTA includes the possibility of performing calculations of electronic
transport properties using the TRANSIESTA method. This Section de-
scribes how to compile the code to be able to use these capabilities, and a
reference guide to the relevant FDF options. We describe here only the ad-
ditional options available for TRANSIESTA calculations, while the rest
of the Siesta functionalities and variables are described in the previous
sections of this User’s Guide.

10.1 Brief description

The TRANSIESTA method is a procedure to solve the electronic struc-
ture of an open system formed by a finite structure sandwiched between
two semi-infinite metallic leads. A finite bias can be applied between both
leads, to drive a finite current. The method is described in detail in [3]. In
practical terms, calculations using TRANSIESTA involve the solution of
the electronic density from the DFT Hamiltonian using Greens functions
techniques, instead of the usual diagonalization procedure. Therefore,
TRANSIESTA calculations involve a SIESTA run, in which a set of rou-
tines are invoked to solve the Greens functions and the charge density for
the open system. These routines are packed in a set of modules, and we
will refer to it as the "TRANSIESTA module’ in what follows.

TRANSIESTA was originally developed by Mads Brandbyge, José-Luis
Mozos, Pablo Ordején, Jeremy Taylor and Kurt Stokbro (see references).
It consisted, mainly, in setting up an interface between SIESTA and the
(tight-binding) transport codes developed by M. Brandbyge and K. Stok-
bro. Initially everything was written in Fortran-77. As STESTA started
to be translated to Fortran-90, so were the TRANSIESTA parts of the
code. This was accomplished by José-Luis Mozos, who also worked on the
parallelization of TRANSIESTA. Subsequently Frederico D. Novaes ex-
tended TRANSIESTA to allow k-point sampling for transverse directions.
Additional extensions was added by Nick R. Papior during 2012.

The current TRANSIESTA module has been completely rewritten by Nick
R. Papior and encompass a highly advanced inversion algorithm as well
as allowing N electrode setups among just a few additional features. Fur-
thermore, the utility TBTRANS has also been fully re-coded (by Nick R.
Papior) to be a generic tight-binding code capable of analyzing physics
from the Greens function perspective in N > 1 setups.

10.2 Source code structure

In this implementation, the TRANSIESTA routines have been grouped
in a set of modules whose file names begin with m_ts. The inclusion of
TRANSIESTA has also required the modification of some of the STIESTA
routines. Presently, these modifications are controlled by pre-processor
compilation directives (such as in #ifdef TRANSIESTA). See the next sec-
tion for compilation instructions.

10.3 Compilation

The standard SIESTA executable (obtained as described in Section 2)
does not include the TRANSIESTA modules. In order to use the TRAN-
SIESTA capabilities, you must compile the SIESTA package as indicated
in this Section. In this way, the compilation is done using the appropriate
preprocessor flags needed to include the TRANSIESTA modules in the
binary file. To generate a binary of SIESTA which includes the TRAN-
SIESTA capabilities, just type:

$ make transiesta

using the appropriate arch.make file for your system (note that you do not
need to make any modification on your arch.make file: you can use the
same one that you have used to make a standard SIESTA compilation in
your system). The Makefile takes care of defining the appropriate prepro-
cessor flag ~-DTRANSIESTA so that the TRANSIESTA modules and modi-
fications are compiled and incorporated into the binary. Upon successful
compilation, the binary file transiesta will be generated, containing an
executable version of SIESTA with TRANSIESTA capabilities.

91

10.4 Running a fast example

Before giving more detailed explanations about TRANSIESTA, let us
start with an example to show the basic operations of a transport calcu-
lation. Starting from the top SIESTA directory:

$ cd Examples/TranSiesta
First it is necessary to do the electrode calculation (see below for details),

$ cd Elec

$ mkdir OUT_Test

$ cd OUT_Test

$cp ../x .

$ transiesta < elec.fast.fdf > elec.fast.out

Note that apart from the usual files generated by STESTA, now you will
find the elec.fast.TSHS file (in general SystemLabel.TSHS). This file
contains the real-space Hamiltonian and Overlap matrices, together with
some other information, that will be used, in the case of electrodes, to
calculate the surface Greens functions.

Once the electrode file has been generated, we can perform the
TRANSIESTA calculation (where the SolutionMethod flag is set to
transiesta).

$ cd ../../Scat

$ mkdir OUT_TS Test

$ cd OUT_TS_Test

$cp ../x .

$ cp ../../Elec/OUT _Test/elec.fast.TSHS .

$ transiesta < scat.fast.fdf > scat.fast.out

Now the two following files should have been generated, scat.fast.TSHS
and scat.fast.TSDE. The first one contains, as previously mentioned,
essentially the Hamiltonian and Overlap matrices, and the .TSDE file
has the TRANSIESTA density matrix, the equivalent to the .DM file of

SIESTA. The transmission function and the current are calculated using
the tbtrans postprocessing tool (below).

Other automated TranSiesta-TBTrans examples can be found in
Tests/TranSiesta-TBTrans.

10.5 Brief explanation

o Transport calculations involve electrode (EL) calculations, and then
the Scattering Region (SR) calculation. The electrode calculations
are usual STESTA calculations, but where a file SystemLabel . TSHS
is generated. These files contain the information necessary for calcu-
lation of the self-energies. If any electrodes have identical structures
(see below) the same SystemLabel . TSHS file can be used to describe
those. In general, however, electrodes can be different and therefore
two different SystemLabel . TSHS files must be generated. The loca-
tion of these electrode files must be specified in the FDF input file
of the SR calculation.

e For the SR, TRANSIESTA starts with the usual SIESTA pro-
cedure, converging a Density Matrix (DM) with the usual Kohn-
Sham scheme for periodic systems. It uses this solution as an
initial input for the Greens function self consistent cycle. As
it is known, SIESTA stores the DM in a file with extension
SystemLabel.DM. In the case of TRANSIESTA, this is done in a file
named SystemLabel.TSDE. In a rerun of the same system (meaning
the same SystemLabel), if the code finds a SystemLabel.TSDE
file in the directory, it will take this DM as the initial input and
this is then considered a continuation run. In this case it does not
perform an initial SIESTA run. It must be clear that when start-
ing a calculation from scratch, in the end one will find both files,
SystemLabel.DM and SystemLabel.TSDE. The first one stores the
SIESTA density matrix (periodic boundary conditions in all direc-
tions and no voltage), and the latter the TRANSIESTA solution.

e« When performing several bias calculations, it is heavily advised to
copy the SystemLabel.TSDE for the closest, previously, calculated
bias.

The SystemLabel.TSDE may be read equivalently as the
SystemLabel.DM. Thus, it may be used by fx. denchar to analyze
the non-equilibrium charge density.

As in the case of SIESTA calculations, what TRANSIESTA does
is to obtain a converged DM, but for open boundary conditions and
possibly a finite bias applied between the electrodes. The corre-
sponding Hamiltonian matrix (once self consistency is achieved) of
the SR is also stored in a SystemLabel.TSHS file. Subsequently,
transport properties are obtained in a post-processing procedure
using the TBTRANS code (located in the Util/TS/TBtrans direc-
tory). It is to be noted that the SystemLabel.TSHS files contain
all the needed structural information (atomic positions, matrix ele-
ments, ...), and so this kind of parameters will not be changed by
input (fdf) flags once they are read a SystemLabel.TSHS file.

When the non-equilibrium calculation uses different electrodes one
may use so-called buffer atoms behind the electrodes to act as
additional screening region when calculating the initial guess (us-
ing SIESTA) for TRANSIESTA. Essentially they may be used to
achieve a better “bulk-like” environment at the electrodes.

An important parameter is the lower bound of the energy contours.
It is a good practice, to start with a SIESTA calculation for the SR
and look at the eigenvalues of the system.

TRANSIESTA still assumes periodic boundary conditions in the xy
directions. For TRANSIESTA, the specified k-point sampling (of
this 2-dimensional Brillouin zone) used in a SR calculation must be
the same as the one that was used for the electrodes, if they are
different the code will stop.

Importantly the k-point sampling need typically be much higher in a
TBTRANS calculation to achieve a converged transmission function.

10.6 Electrodes

In order to calculate the electronic structure of a system under external
bias, TRANSIESTA attaches the system to semi-infinite electrodes which

extend to their respective semi-infinite directions. Examples of electrodes
would include surfaces, nanowires, nanotubes or even atomic chains. The
electrode must be large enough (in the semi-infinite direction) so that
orbitals within the unit cell only interact with a single nearest neighbor cell
in the semi-infinite direction (the size of the unit cell can thus be derived
from the range of support for the orbital basis functions). TRANSIESTA
will warn if this is not enforced. The electrodes are generated by a separate
transiesta run on a bulk system. The results are saved in a file with
extension SystemLabel . TSHS which contains a description of the electrode
unit cell, the position of the atoms within the unit cell, as well as the
Hamiltonian and overlap matrices that describe the electronic structure
of the lead. One can generate a variety of electrodes and the typical use
of transiesta would involve reusing the same electrode for several setups.
At runtime, the transiesta coordinates are checked against the electrode
coordinates and the program stops if there is a mismatch to a certain
precision (10~% Bohr).

Principal layer interactions It is extremely important that the elec-
trodes only interact with one neighboring supercell due to the self-energy
calculation. TRANSIESTA will print out a block as this

<> principal cell is perfect!

if the electrode is correctly setup and it only interacts with its neighboring
supercell. In case the electrode is erroneously setup, something similar to
the following will be shown in the output file.

<> principal cell is extending out with 96 elements:
Atom 1 connects with atom 3
Orbital 8 connects with orbital 26
|H(8,6587) | @R=-2
S(8,6587) |@GR=-2

0.651E-13 eV
0.00

Hamiltonian value:
Overlap

It is imperative that you have a perfect electrode as otherwise nonphysical
results will occur.

By default TRANSIESTA will die if there are connections beyond the
principal cell. One may control whether this is allowed or not by using
TS.Elecs.Neglect.Principal.

10.7 TranSIESTA Options

The fdf options shown here are only to be used at the input file for the
scattering region. When using TRANSIESTA for electrode calculations,
only the usual SIESTA options are relevant. Note that since TRANSI-
ESTA is a generic N electrode NEGF code the input options are heavily
changed.

10.7.1 Quick and dirty

Since 4.1, TRANSIESTA has been fully re-implemented. And so have
every input fdf-flag. To accommodate an easy transition between previous
input files and the new version format a small utility called ts2ts. It may
be compiled in Util/TS/ts2ts. It is recommended that you use this tool
if you are familiar with previous TRANSIESTA versions.

One may input options as in the old TRANSIESTA version and then run

ts2ts OLD.fdf > NEW.fdf

which translates all keys to the new, equivalent, input format. If you are
familiar with the old-style flags this is highly recommendable to become
comfortable with the new input format. Please note that some defaults
have changed to more conservative values in the newer release.

If one does not know the old flags and wish to get a basic example of
an input file, a program Util/TS/tselecs.sh exists that can create the
basic input for N electrodes. One may call it like:

tselecs.sh -2 > TWO_ELECTRODE. fdf
tselecs.sh -3 > THREE_ELECTRODE.fdf
tselecs.sh -4 > FOUR_ELECTRODE. fdf

where the first call creates an input fdf for 2 electrode setups, the second
for a 3 electrode setup, and so on. See the help (-h) for the program for
additional options.

Before endeavoring on large scale calculations you are advised to run an
analyzation of the system at hand, you may run your system as

transiesta -fdf TS.Analyze RUN.fdf > analyze.out Define the temperature used for the Fermi distributions for the chem-
ical potentials. See TS.ChemPot.<>.ElectronicTemperature.
which will analyze the sparsity pattern and print out several different

pivoting schemes. Please see T'S.Analyze for additional information. TS.SCF.Initialize diagon|transiesta (string)

Control which initial guess should be used for TRANSIESTA. The
general way is the diagon solution method, however, one can
start immediately in a TRANSIESTA run. If you start directly
with TRANSIESTA please refer to these flags: TS.Elecs.DM.Init,
DM.Init.Bulk and TS.Fermi.Initial.

NOTE: Setting this to transiesta is highly experimental and con-
vergence may be extremely poor.

10.7.2 General options

(string)
To run TRANSIESTA the solution method must be transiesta.

SolutionMethod transiesta

TS.SolutionMethod btd|mumps|full (string)

Control the algorithm used for calculating the Green function. Gen-

.) NE)
erally the BTD method is the fastest and this option need not be TS.Fermi.Initial 3" Bp/(Np +1)

(energy)

changed. Manually set the initial Fermi level to a predefined value.
NOTE: this may also be used to change the Fermi level for calcu-
TS.Voltage 0eV (energy) lations where you restart calculations. Using this feature is highly

TS.Atoms.Buffer

TS.ElectronicTemperature

Define the reference applied bias. For N = 2 electrode calculations
this refers to the actual potential drop between the electrodes, while
for N # 2 this is a reference bias. In the latter case it must be
equivalent to the maximum difference between the chemical potential
of any two electrodes.

(None) (block/list)

Specify atoms that will be removed in the TRANSITESTA SCF. They
are not considered in the calculation and may be used to improve
the initial guess for the Hamiltonian. Their main usage is to extend
electrodes in their semi-infinite directions.

NOTE: all lines are additive for the buffer atoms and the input
method is similar to that of Geometry.Constraints for the atom
line(s).
%block TBT.Atoms.Buffer
atom [1 -- 5]
%endblock

Or equivalently as a list
TBT.Atoms.Buffer [1 -- 5]

will remove atoms [1-5] from the calculation.

(ElectronicTemperature) (energy)

94

experimental.

TS.Weight.Method

orb-orb|[[un]correlated+][sum|tr]-atom-[atom|orb]|mean
(string)

Control how the NEGF weighting scheme is conducted. Generally
one should only use the orb-orb while the others are present for
more advanced usage. They refer to how the weighting coefficients of
the different non-equilibrium contours are performed. In the follow-
ing the weight are denoted in a two-electrode setup while they are
generalized for multiple electrodes.

Define the normalised geometric mean as !l via

w o (L) = (19)

orb-orb Weight each orbital-density matrix element individually.

tr-atom-atom Weight according to the trace of the atomic density

matrix sub-blocks

|
wiTjYO(Z(Apﬁu)Q Z(Apﬁu)Q
e{i} €{s}

(20)

tr-atom-orb Weight according to the trace of the atomic density
matrix sub-block times the weight of the orbital weight

™ | Tr
Wijpuw X) Wi Wigw (21)

sum-atom-atom Weight according to the total sum of the atomic
density matrix sub-blocks

I
W} D (ApE)2 > (Aph,)? (22)
(i} ()

sum-atom-orb Weight according to the total sum of the atomic den-
sity matrix sub-block times the weight of the orbital weight

s I /s
Wijupy X\ Wi Wig v (23)

mean A standard average.

Each of the methods (except mean) comes in a correlated and un-
correlated variant where > is either outside or inside the square,
respectively.

TS.Weight.k.Method (string)

Control weighting per k-point or the full sum. IL.e. if uncorrelated
is used it will weight ny times if there are ny k-points in the Brillouin
zone.

correlated|uncorrelated

TS.Forces true (logical)

Control whether the forces are calculated. If not TRANSIESTA will
use slightly less memory and the performance slightly increased.

TS.ChargeCorrection none|buffer|fermi (string)
Any excess/deficiency of charge can be re-adjusted after each TRAN-

SIESTA cycle to reduce charge fluctuations in the cell.
none No charge corrections are introduced.

buffer Excess/missing electrons are placed in the buffer regions
(buffer atoms are required to exist)

fermi Correct the filling by calculating a new Fermi-level (reference
energy).
We approximate the contribution to be constant around the Fermi
level and find
Q-Q

Qler

where Q' is the charge from a converged TRANSIESTA calculation
and Q| g, is the equilibrium charge at the current Fermi level, @ is
the supposed charge to reside in the calculation. Fermi correction
utilizes Eq. (24) for the first correction and all subsequent cor-
rections are based on a cubic spline interpolation to much faster
converge to the “correct” Fermi level.

This method will create a file called TS_FERMI and only works with
the BTD solver.

dEp = (24)

TS.ChargeCorrection.Factor 0.75 (real)

Should be between 0 and 1 to lower the charge adjustment. 0 means
no charge correction. 1 means total charge conservation. This will
reduce the fluctuations in the SCF and setting this to 1 may result
in difficulties in converging.

TS.ChargeCorrection.Fermi.Tolerance 0.01

(real)

The tolerance at which the charge correction will converge. Any
excess/missing charge (|Q" — Q| > Tol) will result in a correction for
the Fermi level.

TS.ChargeCorrection.Fermi.Max 1.5eV (energy)
The maximally allowed value that the Fermi level will change from
a charge correction using the Fermi correction method. In case the
Fermi level lies in between two bands a DOS of 0 at the Fermi level
will make the Fermi change equal co. This is not physical and the
user can thus truncate the correction.

If you know the band-gab, setting this to 1/4 (or smaller) of the band
gab seems like a better value than the rather arbitrarily default one.

TS.HS.Save true (logical)

Must be true for saving the Hamiltonian. In almost no cases is this
useful to redefine.

TS.DE.Save true (logical)

Must be true for saving the density matrix for continuation runs. If
false the SystemLabel.TSDE file will not be created.

TS.S.Save false (logical)

This is a flag mainly used for the Inelastica code to produce overlap
matrices for Pulay corrections. This should only be used by advanced
users.

TS.SIESTA.Only false (logical)

Stop TRANSIESTA right after the initial diagonalization run in
SIESTA. Upon exit it will also create the TSDE file which may
be used for initialization runs later.

TS.Analyze false (logical)
When using the BTD solution method (TS.SolutionMethod) this
will analyze the Hamiltonian and printout an analysis on the sparsity
pattern for optimal choice of the BTD partitioning algorithm.

This yields information regarding the TS.BTD.Pivot flag.
NOTE: we advice users to always run an analyzation step prior to
actual calculation and select the best BTD format. This analyzing
step is very fast and may be performed on small work-station com-
puters, even on systems of 10,000+ orbitals.

To run the analyzing step you may do:

transiesta -fdf TS.Analyze RUN.fdf > analyze.out

note that there is little gain on using MPI and it should complete
within a few minutes, no matter the number of orbitals.

Choosing the best one may be difficult. Generally one should choose
the pivoting scheme that uses the least amount of memory. However,
one should also choose the method with largest block-size being as
small as possible. As an example:

TS.BTD.Pivot atom+GPS

BTD partitions (7):
[2984, 2776, 192, 192, 1639, 4050, 105]

Matrix elements in tri / % of full: 68246662 / 47.88707

96

TS.BTD.Pivot

TS.BTD.Pivot atom+GGPS

BTD partitions (6):
[2880, 2916, 174, 174, 2884, 2910]
Matrix elements in tri / % of full: 69303556 / 48.62867

Although the GPS method uses the least amount of memory, the
GGPS will likely perform better as the largest block in GPS is 4050
vs. 2916 for the GGPS method.

10.7.3 Algorithm specific options

These options adhere to the specific solution methods available for
TRANSIESTA. For instance the TS.BTD.* options adhere when using
TS.SolutionMethod btd, and similarly for MUMPS.

(first electrode) (string)

Decide on the partitioning for the BTD matrix. One may denote
either atom+ or orb+ as a prefix which does the analysis on the
atomic sparsity pattern or the full orbital sparsity pattern, respec-
tively. If neither are used it will default to atom+-.

Please see TS.Analyze.
<elec-name> The partitioning will be a connectivity graph starting

from the electrode denoted by the name. This name must be found
in the TS.Elecs block.

rev-CM Use the reverse Cuthill-McKee for pivoting the matrix ele-
ments to reduce bandwidth. One may omit rev- to use the stan-
dard Cuthill-McKee algorithm.

GPS Use the Gibbs-Poole-Stockmeyer algorithm for reducing the
bandwidth.

GGPS Use the generalized Gibbs-Poole-Stockmeyer algorithm for re-
ducing the bandwidth.

PCG Use the perphiral connectivity graph algorithm for reducing the
bandwidth.

Examples are

TS.BTD.Pivot atom+GGPS
TS.BTD.Pivot GGPS
TS.BTD.Pivot orb+GGPS
TS.BTD.Pivot orb+PCG

where the first two are equivalent. The 3rd and 4th are more heavily
on analysis and will typically not improve the bandwidth reduction.

TS.BTD.Optimize (string)
When selecting the smallest blocks for the BTD matrix there are
certain criteria that may change the size of each block. For very
memory consuming jobs one may choose the memory.

NOTE: often both methods provide exactly the same BTD matrix
due to constraints on the matrix.

speed|memory

TS.BTD.Spectral
How to compute the spectral function (GT'GT).
For N < 4 this defaults to propagation which should be the fastest.
For N > 4 this defaults to column.

Check which has the best performance for your system if you endeavor
on huge amounts of calculations for the same system.

propagation|column (string)

TS.MUMPS.Ordering (read MUMPS manual) (string)
One may select from a number of different matrix orderings which
are all described in the MUMPS manual.

The following list of orderings are available (without detailing their
differences): auto, AMD, AMF, SCOTCH, PORD, METIS,
QAMD.

TS.MUMPS.Memory 20 (integer)

Specify a factor for the memory consumption in MUMPS. See the
INFOG(9) entry in the MUMPS manual. Generally if TRANSI-
ESTA dies and INFOG(9)=-9 one should increase this number.

TS.MUMPS.BlockingFactor 112

Specify the number of internal block sizes. Larger numbers increases
performance at the cost of memory.

(integer)

NOTE: this option may heavily influence performance.

10.7.4 Poisson solution for fixed boundary conditions

TRANSIESTA requires fixed boundary conditions and forcing this is an
intricate and important detail.

TS.Poisson (string)

Define how the correction of the Poisson equation is superimposed.
The default is to apply the linear correction across the entire cell
(if there are two semi-infinite aligned electrodes). Otherwise this
defaults to the box solution which will introduce spurious effects at
the electrode boundaries. In this case you are encouraged to supply
a file.

If the input is a file, it should be a NetCDF file containing the grid
information which acts as the boundary conditions for the SCF cycle.
The grid information should conform to the grid size of the unit-cell in
the simulation. NOTE: the file option is only applicable if compiled
with CDF4 compliance.

ramp-cell|ramp-central|elec-box|(file)

(string)
As the fixed boundary conditions requires a fixed reference potential.
For two electrode calculations this defaults to taking the plane at one
of the electrodes basal-planes (plane).

TS.Hartree.Fix plane|elec-plane|elec-box

For anything but two electrodes this defaults to elec-plane because
the plane should be at a fixed position in the cell.

NOTE: generally this shouldn’t need to be changed.

TS.Hartree.Fix.Frac 1.
Fraction of the correction that is applied.

(real)

NOTE: this is an experimental feature and shouldn’t be used.

10.7.5 Electrode description options

As TRANSIESTA supports IV electrodes you need to specify all electrodes
in a generic input format.

%block TS.Elecs (None) (block)
Each line denote an electrode which may be queried in TS.Elec.<>

for its setup.

%block TS.Elec.<> (None) (block)

Each line represents a setting for electrode <>. There are a few lines
that must be present, HS, semi-inf-dir, electrode-pos, chem-pot.

HS The Hamiltonian information from the initial electrode calcula-
tion. This file retains the geometrical information as well as the
Hamiltonian, overlap matrix and the Fermi-level of the electrode.
This is a file-path and the electrode SystemLabel.TSHS need not
be located in the simulation folder.

semi-inf-direction|semi-inf-dir|semi-inf The semi-infinite direc-
tion of the electrode with respect to the electrode unit-cell.
NOTE: this has nothing to do with the scattering region unit
cell, TRANSIESTA will figure out the alignment of the electrode
unit-cell and the scattering region unit-cell.

chemical-potential|chem-pot|mu The chemical potential that is
associated with this electrode. This is a string that should be
present in the TS.ChemPots block.

electrode-position|elec-pos The index of the electrode in the scat-
tering region. This may be given by either elec-pos <idx>, which
refers to the first atomic index of the electrode residing at index
<idx>. Else the electrode position may be given via elec-pos
end <idx> where the last index of the electrode will be located
at <idx>.

used-atoms Number of atoms from the electrode calculation that is
used in the scattering region as electrode. This may be useful when
the periodicity of the electrodes forces extensive electrodes in the
semi-infinite direction.

NOTE: do not set this if you use all atoms in the electrode.
Bulk Logical controlling whether the Hamiltonian of the electrode re-

gion in the scattering region is enforced bulk or whether the Hamil-
tonian is taken from the scattering region elements.

DM-update String of values none, cross-terms or all which con-
trols which part of the electrode density matrix elements that are

98

updated. If all, both the density matrix elements in the electrode
and the coupling elements between the electrode and scattering
region are updated. If cross-terms only the coupling elements
between the electrode and the scattering region are updated.

Gf String with filename of the surface Green function data. This
may be used to place a common surface Green function file in a
top directory which may then be used in all calculations using
the same electrode and the same contour. If many calculations
are performed this will heavily increase performance at the cost of
disk-space.

Gf-Reuse Logical deciding whether the surface Green function file
should be re-used or deleted. If this is false the surface Green
function file is deleted and re-created upon start.

Eta Control the imaginary part of the surface Green function for this
electrode. See TS.Elecs.Eta.

Accuracy Control the convergence accuracy required for the self-
energy calculation when using the Lopez-Sanchez, Lopez-Sanchez
iterative scheme. See T'S.Elecs.Accuracy.

NOTE: advanced use only.

DE Density and energy density matrix file for the electrode. This may
be used to initialize the density matrix elements in the electrode
region by the bulk values. This may be used to increase the bulk-
like behavior of the electrodes.

NOTE: this should only be performed on one TRANSIESTA cal-
culation as then the scattering region SystemLabel.TSDE contains
the electrode density matrix.

Bloch 3 integers are present on this line which each denote the num-
ber of times bigger the scattering region electrode is compared to
the electrode, in each lattice direction. Remark that these expan-
sion coefficients are with regard to the electrode unit-cell. This is
denoted “Bloch” because it is an expansion based on Bloch waves.

Bloch-A/al|B/a2|C/a3 Specific Bloch expansions in each of the
electrode unit-cell direction. See Bloch for details.

pre-expand String denoting how the expansion of the surface Green

function file will be performed. This only affects the Green function
file if Bloch is larger than 1. By default the Green function file will
contain the fully expanded surface Green function, Hamiltonian
and overlap matrices (all). One may reduce the file size by setting
this to Green which only expands the surface Green function.
Finally none may be passed to reduce the file size to the bare
minimum. For performance reasons all is preferred.

out-of-core If true (default) the GF files are created which contain
the surface Green function. If false the surface Green function
will be calculated when needed. Setting this to false will heavily
degrade performance and it is highly discouraged!

check-kgrid For N electrode calculations the k mesh will sometimes
not be equivalent for the electrodes and the device region calcula-
tions. However, TRANSIESTA requires that the device and elec-
trode k samplings are commensurate. This flag controls whether
this check is enforced.

NOTE: only use if fully aware of the implications.

There are several flags which are globally controlling the variables for the
electrodes (with TS.Elec.<> taking precedence).

TS.Elecs.Bulk true (logical)

This globally controls how the Hamiltonian is treated in all elec-
trodes. See TS.Elec.<>.Bulk.

TS.Elecs.Eta 10 %eV (energy)

Globally control the imaginary part used for the surface Green func-
tion calculation. See TS.Elec.<>.Eta.

TS.Elecs.Accuracy 10~ 3eV (energy)

Globally control the accuracy required for convergence of the self-
energy. See TS.Elec.<>.Accuracy.

TS.Elecs.Neglect.Principal false (logical)

If this is false TRANSIESTA dies if there are connections beyond
the principal cell.

NOTE: set this to true with care, non-physical results may arise.

Use at your own risk!

TS.Elecs.Gf.Reuse true (logical)

Globally control whether the surface Green function files should be
re-used (true) or re-created (false). See TS.Elec.<>.Gf-Reuse.

TS.Elecs.Out-of-core true (logical)

Whether the electrodes will calculate the self energy at each SCF
step. Using this will not require the surface Green function files but
at the cost of heavily degraded performance. You are not encouraged
to set this to false. See TS.Elec.<>.0Out-of-core.

TS.Elecs.DM.Update none|cross-termsjall (string)
This globally controls which parts of the electrode density matrix

gets updated. See TS.Elec.<>.DM-Update.

TS.Elecs.DM.Init diagon|bulk (string)

The density matrix elements in the electrodes may be forcefully set to
the bulk values by reading in the DM of the corresponding electrode.
This may be set to bulk to forcefully set the bulk values.

NOTE: this should only be set to bulk for equilibrium calculations.

TS.Elecs.Coord.EPS 10~* Bohr (length)

When using Bloch expansion of the self-energies one may experience
difficulties in obtaining perfectly aligned electrode coordinates.

This parameter controls how strict the criteria for equivalent atomic
coordinates is. If TRANSIESTA crashes due to mismatch between
the electrode atomic coordinates and the scattering region calcula-
tion, one may increase this criteria. This should only be done if one
is sure that the atomic coordinates are almost similar and that the
difference in electronic structures of the two may be negligible.

10.7.6 Chemical potentials

For N electrodes there will also be N, chemical potentials. They are
defined via blocks similar to TS.Elecs.

%block TS.ChemPots (None) (block)

Each line denotes a new chemical potential which is defined in the
TS.ChemPot.<> block.

%block TS.ChemPot.<> (None) (block)
Each line defines a setting for the chemical potential named <>.

chemical-shift|mu Define the chemical shift (an energy) for this
chemical potential. One may specify the shift in terms of the ap-
plied bias using V/<integer> instead of explicitly typing the
energy.

contour.eq A subblock which defines the integration curves for the
equilibrium contour for this equilibrium chemical potential. One
may supply as many different contours to create whatever shape
of the contour
Its format is
contour.eq
begin
<contour-name-1>
<contour-name-2>

end

NOTE: If you do not specify contour.eq in the block one will
automatically use the continued fraction method and you are en-
couraged to use 50 or more poles[6].

ElectronicTemperature| Temp|kT Specify the electronic tem-
perature (as an energy or in Kelvin). This defaults to
TS.ElectronicTemperature.

One may specify this in units of TS.ElectronicTemperature by
using the unit kT.

contour.eq.pole Define the number of poles used via an energy spec-
ification. TRANSIESTA will automatically convert the energy to
the closest number of poles (rounding up).
NOTE: this has precedence
over TS.ChemPot.<>.contour.eq.pole.N if it is specified and
a positive energy. Set this to a negative energy to directly control
the number of poles.

contour.eq.pole.IN Define the number of poles via an integer.

NOTE: this will only
take effect if TS.ChemPot.<>.contour.eq.pole is a negative
energy.

It is important to realize that the parameterization of the voltage into
the chemical potentials enables one to have a single input file which
is never required to be changed, even when changing the applied bias.

These options complicate the input sequence for regular 2 electrode which
is unfortunate.

Using tselecs.sh -only-mu yields this output:

%block TS.ChemPots
Left
Right
%endblock
%block TS.ChemPot.Left
mu V/2
contour.eq
begin
C-Left
T-Left
end
%endblock
%block TS.ChemPot.Right
mu -V/2
contour.eq
begin
C-Right
T-Right
end
%endblock

Note that the default is a 2 electrode setup with chemical potentials asso-
ciated directly with the electrode names “Left” /“Right”. Each chemical
potential has two parts of the equilibrium contour named according to
their name.

100

10.7.7 Complex contour integration options

Specifying the contour for N electrode systems is a bit extensive due
to the possibility of more than 2 chemical potentials. Please use the
Util/TS/tselecs.sh as a means to create default input blocks.

The contours are split in two segments. One, being the equilibrium con-
tour of each of the different chemical potentials. The second for the non-
equilibrium contour. The equilibrium contours are shifted according to
their chemical potentials with respect to a reference energy. Note that
for TRANSIESTA the reference energy is named the Fermi-level, which is
rather unfortunate (for non-equilibrium but not equilibrium). Fortunately
the non-equilibrium contours are defined from different chemical poten-
tials Fermi functions, and as such this contour is defined in the window
of the minimum and maximum chemical potentials.

In this section the equilibrium contours are defined, and in the next section
the non-equilibrium contours are defined.

TS.Contours.Eq.Pole 2.5¢V (energy)
The imaginary part of the Fermi function tail when crossing the Fermi
level. Note that the actual number of poles may differ between dif-
ferent calculations where the electronic temperatures are different.

NOTE: if the energy specified is negative,
TS.Contours.Eq.Pole.N takes effect.
TS.Contours.Eq.Pole.N 8 (integer)

Manually select the # of poles for the equilibrium contour.
NOTE: this flag will only take effect if TS.Contours.Eq.Pole is a
negative energy.

%block TS.Contour.<> (None)
Specify a contour named <> with options within the block.

The names <> are taken from the TS.ChemPot.<>.contour.eq
block in the chemical potentials.

(block)

The format of this block is made up of at least 4 lines, in the following
order of appearance.

part Specify which part of the equilibrium contour this is:

circle The initial circular part of the contour
square The initial square part of the contour
line The straight line of the contour

tail The final part of the contour must be a tail which denotes the
Fermi-tail.

from a to b Define the integration range on the energy axis. Thus
a and b are energies.

NOTE: that b may be supplied as inf for tail parts.

points/delta Define the number of integration points/energy sepa-
ration. If specifying the number of points an integer should be
supplied.

If specifying the separation between consecutive points an energy
should be supplied.

method Specify the numerical method used to conduct the integra-
tion. Here a number of different numerical integration schemes are
accessible

mid|mid-rule Use the mid-rule for integration.

simpson|simpson-mix Use the composite Simpson 3/8 rule (three
point Newton-Cotes).

boole|boole-mix Use the composite Booles rule (five point
Newton-Cotes).

G-legendre Gauss-Legendre quadrature.
NOTE: has opt right

tanh-sinh Tanh-Sinh quadrature.
NOTE: has opt precision <>.
NOTE: has opt right.

G-Fermi Gauss-Fermi quadrature (only on tails).

opt Specify additional options for the method. Only a selected sub-
set of the methods have additional options.

These options complicate the input sequence for regular 2 electrode which

101

is unfortunate. However, it allows highly customizable contours, etc.
Using tselecs.sh -only-c yields this output:
TS.Contours.Eq.Pole 2.5 eV

%block TS.Contour.C-Left
part circle

from -40. eV + V/2 to -10 kT + V/2
points 25
method g-legendre
hendblock
%block TS.Contour.T-Left
part tail
from prev to inf
points 10
method g-fermi
hendblock

%block TS.Contour.C-Right
part circle
from -40. eV -V/2 to -10 kT -V/2

points 25

method g-legendre
hendblock
%block TS.Contour.T-Right

part tail
from prev to inf

points 10

method g-fermi
hendblock

These contour options refer to input options for the chemical potentials as
shown in Sec. 10.7.6 (p. 99). Importantly one should note the shift of the
contours of corresponding to the chemical potential (the shift corresponds
to difference from the reference energy used in TRANSIESTA).

10.7.8 Bias contour integration options

The bias contour is similarly defined as the equilibrium contours. Please
use the Util/TS/tselecs.sh as a means to create default input blocks.

TS.Contours.nEq.Eta 0eV (energy)

The imaginary part (1) of the device states. Generally this is not
necessary to define as the imaginary part arises from the self-energies
(where n > 0).

TS.Contours.nEq.Fermi.Cutoff 5kgT (energy)
The bias contour is limited by the Fermi function tails. Numerically
it does not make sense to integrate to infinity. This energy defines

where the bias integration window is turned into zero. Thus above
—|V|/2 — E or below |V|/2 + E the DOS is defined as exactly zero.

%block TS.Contours.nEq (None) (block)

Each line defines a new contour on the non-equilibrium bias window.
The contours defined must be defined in TS.Contour.nEq.<>.

These contours must all be part line or part tail.

%block TS.Contour.nEq.<> (None) (block)

This block is ezxactly equivalently defined as the TS.Contour.<>.
See page 101.

The default options related to the non-equilibrium bias contour are defined
as this:

%block TS.Contours.nEq
neq-1
%endblock TS.Contours.nEq
%block TS.Contour.nEq.neq-1
part line
from -|V|/2 - 5 kT to |V|/2 + 5 kT
delta 0.01 eV
method mid-rule
%endblock TS.Contour.nEq.neq-1

If one chooses a different reference energy than 0, then the lim-
its should change accordingly. Note that here kT refers to
TS.ElectronicTemperature.

10.8 Matching TranSIESTA coordinates: basic rules

Having discussed the possible input options of TRANSIESTA here we
just list a set of rules to construct the appropriate coordinates of the scat-

102

tering region. Contrary to versions pre 4.1, the order of atoms is largely
irrelevant. One may define all electrodes, then subsequently the device,
or vice versa. Similarly are buffer atoms not restricted to be the first/last
atoms. However, each electrode atoms must be defined consecutively. Le.
if an electrode input option is given by:

%block TS.Elec.<>
HS ../elec-<>/siesta.TSHS
bloch 1 3 1
used-atoms 4
electrode-position 10
%endblock

then the atoms from 10 to 21 must coincide with the atoms of the calcu-
lation performed in the ../elec-<>/ subdirectory. The Bloch expansion
requires a particular sequence of the atoms which may be outlined as in
the following loop:

iaD = 10 ! as per the above input option

do iaE =1 , na_u
do iC=0, nC -1
do iB=0, nB -1

do iA=0, nA -1
xyz_device(:, iaD) = xyz_elec(:, iaE) + &
cell _elec(:, 1) * iA + &
cell_elec(:, 2) * iB + &
cell_elec(:, 3) * iC
iaD = iaD + 1
end do
end do
end do
end do

As a help, TRANSIESTA prints out the expected coordinates as though
the first device atom coincides with the first electrode atom. Another
means to create this is using the SISL program and this command line:

sgeom -rx 1 -ry 3 -rz 1 ELEC.fdf DEVICE_ELEC.fdf

and then shift the coordinates according to the placement in the device
region.

10.9 Output

TRANSIESTA generates several output files.

SystemLabel.DM : The SIESTA density matrix. SIESTA initially per-
forms a calculation at zero bias assuming periodic boundary condi-
tions in all directions, and no voltage, which is used as a starting
point for the TRANSIESTA calculation.

SystemLabel.TSDE : The TRANSIESTA density matrix and energy den-
sity matrix. During a transiesta run, the SystemLabel.DM values
are used for the density matrix in the buffer (if used) and elec-
trode regions. The coupling terms may or may not be updated in a
TRANSIESTA run, see TS.Elec.<>.DM-Update.

SystemLabel.TSHS : The Hamiltonian
sponding to SystemLabel.TSDE. This file also contains geometry
information etc. needed by TRANSIESTA and TBTRANS.

corre-

SystemLabel.TSKP : The k-points used in the TRANSIESTA calcula-
tion. See SIESTA SystemLabel.KP file for formatting information.

SystemLabel.TSCCEQ* :
paths.

The equilibrium complex contour integration

SystemLabel.TSCCNEQ#* : The non-equilibrium complex contour integra-
tion paths.

10.10 Utilities for analysis: TBtrans

Please see the separate TBTRANS manual (tbtrans.pdf).

11 ANALYSIS TOOLS

There are a number of analysis tools and programs in the Util directory.
Some of them have been directly or indirectly mentioned in this man-

103

ual. Their documentation is the appropriate sub-directory of Util. See
Util/README.

12 SCRIPTING

In the Util/Scripting directory we provide an experimental python
scripting framework built on top of the “Atomic Simulation Environment”
(see https://wiki.fysik.dtu.dk/ase2) by the Campos group at DTU,
Denmark.

(NOTE: “ASE version 2”, not the new version 3, is needed)

There are objects implementing the "Siesta as server /subroutine" feature,
and also hooks for file-oriented-communication usage. This interface is
different from the STESTA-specific functionality already contained in the
ASE framework.

Users can create their own scripts to customize the “outer geometry loop”
in STIESTA, or to perform various repetitive calculations in compact form.

Note that the interfaces in this framework are still evolving and are subject
to change.

Suggestions for improvements can be sent to Alberto Garcia (alber-
tog@Qicmab.es)

13 PROBLEM HANDLING

13.1 Error and warning messages

chkdim: ERROR: In routine dimension parameter = value.

And other similar messages.

Description: Some array dimensions which change infrequently, and
do not lead to much memory use, are fixed to oversized values. This
message means that one of this parameters is too small and neads
to be increased. However, if this occurs and your system is not very
large, or unusual in some sense, you should suspect first of a mistake
in the data file (incorrect atomic positions or cell dimensions, too

large cutoff radii, etc).

Fiz: Check again the data file. Look for previous warnings or sus-
picious values in the output. If you find nothing unusual, edit the
specified routine and change the corresponding parameter.

14 REPORTING BUGS

Your assistance is essential to help improve the program. If you find any
problem, or would like to offer a suggestion for improvement, please follow
the instructions in the file Docs/REPORTING_BUGS.

Since SIESTA has moved to Launchpad you are encouraged to follow the
instructions presented at: https://answers.launchpad.net/siesta/
+faq/2779.

15 ACKNOWLEDGMENTS

We want to acknowledge the use of a small number of routines, written by
other authors, in developing the siesta code. In most cases, these routines
were acquired by now-forgotten routes, and the reported authorships are
based on their headings. If you detect any incorrect or incomplete attri-
bution, or suspect that other routines may be due to different authors,
please let us know.

e The main nonpublic contribution, that we thank thoroughly, are
modified versions of a number of routines, originally written by A.
R. Williams around 1985, for the solution of the radial Schrédinger

It must be ynqd Poisson equations in the APW code of Soler and Williams (PRB

42, 9728 (1990)). Within SIESTA, they are kept in files arw.f and
periodic_ table.f, and they are used for the generation of the basis
orbitals and the screened pseudopotentials.

o The exchange-correlation routines contained in file xc.f were written
by J.M.Soler in 1996 and 1997, in collaboration with C. Balbas and
J. L. Martins. Routine pzxc (in the same file), which implements

104

mailto:albertog@icmab.es
mailto:albertog@icmab.es
https://answers.launchpad.net/siesta/+faq/2779
https://answers.launchpad.net/siesta/+faq/2779

the Perdew-Zunger LDA parametrization of xc, is based on routine
velect, written by S. Froyen.

e The serial version of the multivariate fast fourier transform used to
solve Poisson’s equation was written by Clive Temperton.

e Subroutine iomd.f for writing MD history in files was originally writ-
ten by J. Kohanoff.

We want to thank very specially O. F. Sankey, D. J. Niklewski and
D. A. Drabold for making the FIREBALL code available to P. Ordejon.
Although we no longer use the routines in that code, it was essential in
the initial development of the SIESTA project, which still uses many of
the algorithms developed by them.

We thank V. Heine for his support and encouraging us in this project.

The SIESTA project is supported by the Spanish DGES through several
contracts. We also acknowledge past support by the Fundacion Ramoén
Areces.

105

16 APPENDIX: Physical unit names recognized

by FDF
Magnitude Unit name MKS value
mass Kg 1.E0
mass g 1.E-3
mass amu 1.66054E-27
length m 1.E0
length cm 1.E-2
length nm 1.E-9
length Ang 1.E-10
length Bohr 0.529177E-10
time S 1.E0
time fs 1.E-15
time ps 1.E-12
time ns 1.E-9
time mins 60.E0
time hours 3.6E3
time days 8.64E4
energy J 1.E0
energy erg 1.E-7
energy eV 1.60219E-19
energy meV 1.60219E-22
energy Ry 2.17991E-18
energy mRy 2.17991E-21
energy Hartree 4.35982E-18
energy K 1.38066E-23
energy kcal/mol 6.94780E-21
energy mHartree 4.35982E-21
energy kJ/mol 1.6606E-21
energy Hz 6.6262E-34
energy THz 6.6262E-22
energy cm-1 1.986E-23
energy cm**-1 1.986E-23
energy cm” -1 1.986E-23
force N 1.E0
force eV/Ang 1.60219E-9
force Ry/Bohr 4.11943E-8

106

Magnitude Unit name MKS value
pressure Pa 1.E0
pressure MPa 1.E6
pressure GPa 1.E9
pressure atm 1.01325E5
pressure bar 1.E5
pressure Kbar 1.E8
pressure Mbar 1.E11
pressure Ry/Bohr**3 1.47108E13
pressure eV/Ang**3 1.60219E11
charge C 1.E0
charge e 1.602177E-19
dipole C*m 1.E0
dipole D 3.33564E-30
dipole debye 3.33564E-30
dipole e*Bohr 8.47835E-30
dipole e*Ang 1.602177E-29
MomlInert — Kg*m**2 1.E0
MomlInert Ry*fs**2 2.17991E-48
Efield V/m 1.E0
Efield V/nm 1.E9
Efield V/Ang 1.E10
Efield V/Bohr 1.8897268E10
Efield Ry/Bohr/e 2.5711273E11
Efield Har/Bohr/e 5.1422546E11
angle deg 1.d0
angle rad 5.72957795E1
torque eV/deg 1.E0
torque eV /rad 1.745533E-2
torque Ry/deg 13.6058E0
torque Ry/rad 0.237466E0
torque meV /deg 1.E-3
torque meV /rad 1.745533E-5
torque mRy/deg 13.6058E-3
torque mRy /rad 0.237466E-3

17 APPENDIX: XML Output

From version 2.0, SIESTA includes an option to write its output to an
XML file. The XML it produces is in accordance with the CMLComp
subset of version 2.2 of the Chemical Markup Language. Further infor-
mation and resources can be found at http://cmlcomp.org/|and tools for
working with the XML file can be found in the Util/CMLComp directory.

The main motivation for standarised XML (CML) output is as a step
towards standarising formats for uses like the following.

e To have SIESTA communicating with other software, either for
postprocessing or as part of a larger workflow scheme. In such a
scenario, the XML output of one STESTA simulation may be easily
parsed in order to direct further simulations. Detailed discussion of
this is out of the scope of this manual.

o To generate webpages showing STESTA output in a more accessible,
graphically rich, fashion. This section will explain how to do this.

17.1 Controlling XML output

XML.Write true (logical)
Determine if the main XML file should be created for this run.

17.2 Converting XML to XHTML

The translation of the SIESTA XML output to a HTML-based webpage
is done using XSLT technology. The stylesheets conform to XSLT-1.0
plus EXSLT extensions; an xslt processor capable of dealing with this is
necessary. However, in order to make the system easy to use, a script
called ccViz is provided in Util/CMLComp that works on most Unix or
Mac OS X systems. It is run like so:

./ccViz SystemLabel.xml

A new file will be produced.
SystemLabel.xhtml to view the output.

Point your web-browser at

The generated webpages include support for viewing three-dimensional
interactive images of the system. If you want to do this, you will either
need jMol (http://jmol.sourceforge.net) installed or access to the
internet. As this is a Java applet, you will also need a working Java
Runtime Environment and browser plugin - installation instructions for
these are outside the scope of this manual, though. However, the webpages
are still useful and may be viewed without this plugin.

An online version of this tool is avalable from http://cmlcomp.org/
ccViz/|, as are updated versions of the ccViz script.

107

http://cmlcomp.org/
http://jmol.sourceforge.net
http://cmlcomp.org/ccViz/
http://cmlcomp.org/ccViz/

18 APPENDIX: Selection of precision for stor-
age

Some of the real arrays used in Siesta are by default single-precision,
to save memory. This applies to the array that holds the values of the
basis orbitals on the real-space grid, to the historical data sets in Broyden
mixing, and to the arrays used in the O(N) routines. Note that the grid
functions (charge densities, potentials, etc) are now (since mid January
2010) in double precision by default.

The following pre-processing symbols at compile time control the precision
selection

e Add -DGRID_SP to the DEFS variable in arch.make to use single-
precision for all the grid magnitudes, including the orbitals array
and charge densities and potentials. This will cause some numerical
differences and will have a negligible effect on memory consumption,
since the orbitals array is the main user of memory on the grid, and
it is single-precision by default. This setting will recover the default
behavior of versions prior to 4.0.

e Add -DGRID_DP to the DEFS variable in arch.make to use double-
precision for all the grid magnitudes, including the orbitals array.
This will significantly increase the memory used for large problems,
with negligible differences in accuracy.

o Add -DBROYDEN_DP to the DEFS variable in arch.make to use double-
precision arrays for the Broyden historical data sets. (Remember
that the Broyden mixing for SCF convergence acceleration is an
experimental feature.)

e Add -DON_DP to the DEFS variable in arch.make to use double-
precision for all the arrays in the O(N) routines.

19 APPENDIX: Data structures and reference
counting

To implement some of the new features (e.g. charge mixing and DM
extrapolation), SIESTA uses new flexible data structures. These are
defined and handled through a combination and extension of ideas already
in the Fortran community:

e Simple templating using the “include file” mechanism, as for ex-
ample in the FLIBS project led by Arjen Markus (http://flibs.
sourceforge.net).

e The classic reference-counting mechanism to avoid memory leaks,
as implemented in the PyF95++ project (http://blockit.
sourceforge.net).

Reference counting makes it much simpler to store data in container ob-
jects. For example, a circular stack is used in the charge-mixing module.
A number of future enhancements depend on this paradigm.

108

http://flibs.sourceforge.net
http://flibs.sourceforge.net
http://blockit.sourceforge.net
http://blockit.sourceforge.net

References

[1] Amartya S. Banerjee, Phanish Suryanarayana, and John E. Pask.
Periodic Pulay method for robust and efficient convergence accel-
eration of self-consistent field iterations. Chemical Physics Letters,
647:31-35, mar 2016. ISSN 00092614. doi: 10.1016/j.cplett.2016.
01.033. URL http://linkinghub.elsevier.com/retrieve/pii/
S50009261416000464.

[2] D.R Bowler and M.J Gillan. An efficient and robust technique for
achieving self consistency in electronic structure calculations. Chemi-
cal Physics Letters, 325(4):473-476, jul 2000. ISSN 00092614. doi: 10.
1016/S0009-2614(00)00750-8. URL http://linkinghub.elsevier.
com/retrieve/pii/S0009261400007508.

[3] Mads Brandbyge, José-Luis Mozos, Pablo Ordején, Jeremy Tay-
lor, and Kurt Stokbro. Density-functional method for nonequilib-
rium electron transport. Physical Review B, 65(16):165401, mar
2002. ISSN 0163-1829. doi: 10.1103/PhysRevB.65.165401. URL
http://link.aps.org/doi/10.1103/PhysRevB.65.165401.

[4] G. Kresse and J. Furthmiiller. Efficiency of ab-initio total en-
ergy calculations for metals and semiconductors using a plane-wave
basis set. Computational Materials Science, 6(1):15-50, jul 1996.
ISSN 09270256. doi: 10.1016/0927-0256(96)00008-0. URL http:
//linkinghub.elsevier.com/retrieve/pii/0927025696000080.

[5] Lin Lin, Alberto Garcia, Georg Huhs, and Chao Yang. SIESTA-
PEXSI: massively parallel method for efficient and accurate
ab initio materials simulation without matrix diagonalization.
Journal of Physics: Condensed Matter, 26(30):305503, jul
2014. ISSN 0953-8984. doi: 10.1088/0953-8984/26/30/305503.
URL http://stacks.iop.org/0953-8984/26/1=30/a=3055037key=
crossref .dd07c5e621546c5e67b1052b8800dacal

[6] Taisuke Ozaki, Kengo Nishio, and Hiori Kino. Efficient implemen-
tation of the nonequilibrium Green function method for electronic
transport calculations. Physical Review B, 81(3):035116, jan 2010.
ISSN 1098-0121. doi: 10.1103/PhysRevB.81.035116. URL http:
//1link.aps.org/doi/10.1103/PhysRevB.81.035116.

109

http://linkinghub.elsevier.com/retrieve/pii/S0009261416000464
http://linkinghub.elsevier.com/retrieve/pii/S0009261416000464
http://linkinghub.elsevier.com/retrieve/pii/S0009261400007508
http://linkinghub.elsevier.com/retrieve/pii/S0009261400007508
http://link.aps.org/doi/10.1103/PhysRevB.65.165401
http://linkinghub.elsevier.com/retrieve/pii/0927025696000080
http://linkinghub.elsevier.com/retrieve/pii/0927025696000080
http://stacks.iop.org/0953-8984/26/i=30/a=305503?key=crossref.dd07c5e621546c5e67b1052b8800daca
http://stacks.iop.org/0953-8984/26/i=30/a=305503?key=crossref.dd07c5e621546c5e67b1052b8800daca
http://link.aps.org/doi/10.1103/PhysRevB.81.035116
http://link.aps.org/doi/10.1103/PhysRevB.81.035116

Index

animation, 31
antiferromagnetic initial DM, 44

Backward compatibility, 41, 79

band structure, 62

basis, 25
basis set superposition error (BSSE), 24
Bessel functions, 24
default soft confinement, 21
default soft confinement potential, 21
default soft confinement radius, 21
filteret basis set, 24
filtering, 25
fix split-valence table, 20
Gen-basis standalone program, 25
Gen-basis standalone program, 25
ghost atoms, 24
minimal, 20
new split-valence code, 20, 21
PAO, 19, 20, 23
per-shell split norm, 24
point at infinity, 26
polarization, 20, 24
reparametrization of pseudopotential, 26
soft confinement potential, 24
split valence, 20
split valence for H, 20
User basis, 25
User basis (NetCDF format), 25

Berry phase, 67

Bessel functions, 24

%block, 13

Born effective charges, 68

Broyden mixing, 108

Broyden optimization, 81

bug reports, 104
bulk polarization, 67

cell relaxation, 80
CERIUS2, 31
Charge confinement, 19, 24
Charge of the system, 70, 72
Chebyshev Polynomials, 56
Chemical Potential, 56
CML, 107
compile
libraries, 8
MPI, 7
OpenMP, 8
pre-processor
-DCDF, 10
-DMPI, 8
-DMPI_TIMING, 77
-DNCDF, 10
-DNCDF_ 4, 10, 78
-DNCDF_PARALLEL, 10
-DSIESTA___ FLOOK, 11
-DSIESTA__ METIS, 10
-DSIESTA___ MRRR, 52
-DSIESTA_ MUMPS, 10
-DSIESTA___ PEXSI, 10
Conjugate-gradient history information, 81
constant-volume cell relaxation, 80
constraints in relaxations, 84
COOP/COHP curves, 66
Folding in Gamma-point calculations, 51
cutoff radius, 23

Data Structures, 108
denchar, 77

110

density of states, 53, 64

Dielectric function,optical absorption, 66
diffuse orbitals, 19

Doping, 70, 72

double-¢, 20

egg-box effect, 48-50
E162DOS, 53, 64
exchange-correlation
AMO5, 34
BH, 35
BLYP, 34
C09, 35
CA, 34
DRSLL, 35
GGA, 34
KBM, 35
LDA, 34
LMKLL, 35
LSD, 34
PBE, 34
PBEGcGxHEG, 34
PBEGcGxLO, 34
PBEJsJrHEG, 34
PBEJsJrLO, 34
PBEsol, 34
PWo1, 34
PWO92, 34
Pz, 34
revPBE, 34
RPBE, 34
vdW, 35
vdW-DF, 35
vdW-DF1, 35
vdW-DF2, 35
VV, 35
WC, 34
External library

BLAS, 9
fdict, 10
flook, 11, 79
LAPACK, 9
Metis, 10
MPI, 7
MUMPS, 10
ncdf, 10
NetCDF, 10
OpenMP, 8
PEXSI, 10
ScaLAPACK, 9

fatbands, 63

FDF, 13

fdf.log, 12, 13

ferromagnetic initial DM, 44
finite-range pseudo-atomic orbitals, 19
fixed spin state, 35, 36

flook, 11, 79

Force Constants Matrix, 79, 86, 87
fractional program, 15

Gate, 71
bounded plane, 71
box, 72
infinite plane, 71
spheres, 72

Gaussians, 19

Gen-basis, 16

Gen-basis, 25

ghost atoms, 15, 24

gnubands, 62

grid, 48

Grid precision, 108

Ground-state atomic configuration, 20

Hirshfeld population analysis, 65, 66

111

input file, 13 density matrix, 45, 46

interatomic distances, 33 density matrix history, 46
isotopes, 15 eigenvalues, 14, 53, 64

electrostatic potential, 73
JMor, 31 forces, 14, 83

grid k points, 14, 34

Kleinman-Bylander projectors, 21 Hamiltonian, 46

Localized Wave Functions, 56 Hamiltonian & overlap, 50

Lower order N memory, 56 Hamiltonian history, 46

LSD, 35’ 36 Hirshfeld analysis, 65, 66
HSX file, 50

Makefile, 7 Information for COOP/COHP curves, 66

mesh, 48 ionic charge, 73

Metis, 10 local density of states, 65

minimal basis, 19 long, 14

mixps program, 15 main output file, 14

MOLDEN, 31 molecular dynamics

Mulliken population analysis, 14, 65 Force Constants Matrix, 86

multiple-¢, 19, 20 history, 83, 84

MUMPS, 10 Mulliken analysis, 14, 65

overlap matrix, 46

NetCDF format, 10, 25 overlap matrix history, 46

5 10 projected density of states, 64
10 total charge, 74
output total potential, 73

5p(F), T3 Voronoi an‘alysw, 65, 66
wave functions, 14, 63

atomic coordinates)
output of wave functions for bands, 63

in a dynamics step, 14, 83

initial, 83 perturbative polarization, 20
Bader_)charge, 4 perturbative polarization, 24
band k points, 14, 62 PEXSI. 10
band structure, 62 PEXSI solver, 57
basis, 25

polarization orbitals, 19

charge density, 73, 74 Precision selection, 108

charge density and/or wfs for DENCHAR code, 77 pseudopotential

customization, 14 example generation, 11

dedicated files, 14 files, 16

112

generation, 16 SCF convergence criteria, 46
Scripting, 79

reading saved data, 77 Sies?2arc. 32

all, 77 SIES2ARC, 31
CG, 81 SIESTA, 5
charge density, 45 single-¢, 20
deformation charge density, 45 Slab dipole correction, 71
density matrix, 44 Slabs with net charge, 71
localized wave functions (order-NN), 57 species, 15
XV, 32 spin, 36
ZM, 32 initialization, 44
readwf, 64 split valence, 19
readwisx, 64 structure input precedence issues, 32
Reference counting, 108 synthetic atoms, 15
relaxation of cell parameters only, 80
removal of intramolecular pressure, 82 tbtrans, 103
Restart of O(N) calculations, 57 Tests, 11
rippling, 48-50 TRANSIESTA, 6
transiesta
scale factor, 24 electrode
SCF, 38 principal layer, 93
compat-pre4-dm-h, 41
Doping, 70, 72 Variational character of E_ KS, 37
mixing, 38, 42 VCA, 15
Broyden, 39 VIBRA, 86
Charge, 38, 42, 43 Voronoi population analysis, 65, 66
Density, 38
Density matrix convergence, 47 XML, 107
XMor, 31

end of cycle, 42
energy convergence, 47
energy density matrix convergence, 47
Hamiltonian, 38
Hamiltonian convergence, 47
harris energy convergence, 47
Linear, 38
Pulay, 38
Potential, 71
Recomputing H, 42

113

List of SIESTA files
arch.make, 7-11, 108

BaderCharge.grid.nc, 74
BASIS_ENTHALPY, 26, 47
BASIS_HARRIS_ENTHALPY, 47

Chlocal.grid.nc, 73
constr.f, 85

DeltaRho.grid.nc, 73
DeltaRho.IN.grid.nc, 45
DM-NNNN.nc, 46
DM.nc, 46
DM_MIXED.blocked, 46
DM_0OUT.blocked, 46
DMHS-NNNN.nc, 46

DMHS .nc, 46

ElectrostaticPotential.grid.nc, 73

H_DMGEN, 46
H_MIXED, 46

NEXT_ITER.UCELL.ZMATRIX, 31

0CCs, 52
OUT.UCELL . ZMATRIX, 31

pdos.xml, 65
PEXSI_INTDOS, 61

Rho.grid.nc, 61, 73
Rho.IN.grid.nc, 45
RhoInit.grid.nc, 74
RhoXC.grid.nc, 73

SystemLabel. .arc, 31
SystemLabel. .DM, 44

SystemLabel.
SystemLabel.
SystemLabel.
SystemLabel.
SystemLabel.
SystemLabel.
SystemLabel.
SystemLabel.
SystemLabel.
SystemLabel.
SystemLabel.
SystemLabel.
SystemLabel.
SystemLabel.
SystemLabel.
SystemLabel.
SystemLabel.
SystemLabel.
SystemLabel.
SystemLabel.
SystemLabel.
SystemLabel.
SystemLabel.
SystemLabel.
SystemLabel.
SystemLabel.
SystemLabel.
SystemLabel.
SystemLabel.
SystemLabel.
SystemLabel.
SystemLabel.
SystemLabel.
SystemLabel.
SystemLabel.

114

alloc, 77

amn, 6Y

ANI, 31

arc, 32
ATOM.gv, 20
BADER, 74
bands, 61, 62
bands.WFSX, 63
BC, 69
BONDS, 33
BONDS_FINAL, 33
CG, 81

DINM, 78

DM, 35, 44-46, 77, 92, 103
DMF, 44

DOS, 64
DRHO, 73

EIG, 53, 61
eigW, 70
EPSIMG, 66

FA, 83

FAC, 83

FC, 87

FCC, 87
fullBZ.WFSX, 53, 66
grid.nc, 45
HS, 50

HSX, 50, 66
IOCH, 73

KP, 34, 103
LDOS, 65

LDSI, 61

LWF, 57, 77

MD, 31, 83, 84
MDC, 34

SystemLabel.
SystemLabel.
.mmn, 69

SystemLabel

SystemLabel.
SystemLabel.
SystemLabel.
SystemLabel.
SystemLabel.
SystemLabel.
SystemLabel.
SystemLabel.
SystemLabel.
SystemLabel.
SystemLabel.
SystemLabel.
SystemLabel.
SystemLabel.
SystemLabel.
SystemLabel.
SystemLabel.
SystemLabel.
SystemLabel.
SystemLabel.
SystemLabel.
SystemLabel.
SystemLabel.
SystemLabel.
SystemLabel.
SystemLabel.
SystemLabel.
SystemLabel.
SystemLabel.

MDE, 84
MDX, 31, 83, 84

N.TSHS, 46

nc, 78

nnkp, 69
ORB.gv, 20
PDOS, 64, 65

PLD, 78

RHO, 73
RHOINIT, 74
RHOXC, 73
selected.WFSX, 63
STRUCT_IN, 31, 32

STRUCT_NEXT_ITER, 31

STRUCT_OUT, 31
times, 77

TOCH, 74
TSCCEQ*, 103
TSCCNEQ*, 103
TSDE, 92, 96, 98, 103
TSHS, 91-93, 98, 103
TSKP, 103

VH, 73

VN4, 73

VT, 73

WFS, 64, 66
WFSX, 63, 64, 66, 78
xtl, 31

XV, 31, 32, 77, 81, 83
xyz, 31

ZM, 32

TotalPotential.grid.nc, 73

TS_FERMI, 95

UNKXXXXX.Y, 70

Vna.grid.nc,

73

WFS.nc, 53, 63

115

List of fdf flags

AllocReportLevel, 76
AllocReportThreshold, 77
AnalyzeChargeDensityOnly, 74
AtomCoorFormatOut, 28, 31, 32
AtomicCoordinatesAndAtomicSpecies, 15, 27, 28, 44, 84, 85
AtomicCoordinatesFormat, 28, 31, 32
Ang, 28
Bohr, 28
Fractional, 28
NotScaledCartesianAng, 28
NotScaledCartesianBohr, 28
ScaledCartesian, 28
AtomicCoordinatesOrigin, 28, 31
AtomicMass, 15
AtomSetupOnly, 25

BandLines, 62, 63, 76
BandLinesScale, 62
BandPoints, 62, 63, 76
BasisPressure, 26
BlockSize, 54, 55, 75
BornCharge, 68, 86

CDF

Compress, 78

Grid.Precision, 78

MPI, 78

Save, 78
ChangeKgridInMD, 33
ChemicalSpeciesLabel, 15, 16, 23, 25, 27, 32, 85
Compat

Pre-v4-DM-H, 41, 42

Pre-v4-Dynamics, 79, 80
COOP.Write, 50, 53, 63, 66

Debug

DIIS, 43
Diag

AlllnOne, 52

DivideAndConquer, 52

ELPA, 51

Memory, 75

MRRR, 52

NoExpert, 52

ParallelOverK, 35, 52, 76

PreRotate, 52

Use2D, 52

UseNewDiagk, 52, 53, 63
DirectPhi, 76
DM

AllowExtrapolation, 45

AllowReuse, 45

FormattedFiles, 44

FormattedInput, 44

FormattedOutput, 44

History.Depth, 45

InitSpin, 44

AF, 44

InitSpinAF, 45

MixingWeight, 42

UseSaveDM, 38, 44
DM.EnergyTolerance, 47
DM.Init.Bulk, 94
DM.InitSpin, 36
DM.KickMixingWeight, see SF.Mixer.Kick.Weight39
DM.MixingWeight, see SF.Mixer.Weight39
DM.MixSCF1, see SF.Mix.First38
DM.Normalization.Tolerance, 47
DM.NumberBroyden, see SF.Mixer.History39
DM.NumberKick, see SF.Mixer.Kick39

116

DM.NumberPulay, see SF.Mixer.History39 LDAU.Proj, 87

DM.Require.Harris.Convergence, 47 LDAU.ProjectorGenerationMethod, 87, 88
DM.RequireEnergyConvergence, 47 LDAU.ThresholdTol, 88
DM.Tolerance, 47 LocalDensityOfStates, 65
DM.UseSaveDM, 55, 74 LongOutput, 14, 34, 83

Lua
EggboxRemove, 49, 50 Debug, 90
EggboxScale, 49, 50 Debug.MPI, 90
ElectronicTemperature, 36, 53, 57, 94 Script, 89

ExternalElectricField, 71
MaxBondDistance, 33

F%lterCutoff, 24, 25 MaxSCFIterations, 38
FilterTol, 25 MaxWalltime, 77
FixAuxiliaryCell, 51 Slack, 77
Geometry Mb

Charge, T2 TypeOfRun, 32, 89

UseSaveXV, 32
UseSaveZM, 32
MD.AnnealOption, 79, 82, 83

Constraints, 84, 94
Hartree, 71, 72
Grid.CellSampling, 48, 49

MD.Broyden
Harris Cycle.On.Maxit, 81
Functional, 37 History.Steps, 81
Initial.Inverse.Jacobian, 81
KB.New.Reference.Orbitals, 22 MD.Broyden.Initial.Inverse.Jacobian, 80
kgrid MD.BulkModulus, 83
Cutoff, 33 MD.Constant Volume, 80
MonkhorstPack, 27, 33 MD.FCDispl, 86
kgrid.Cutoff, 64 MD.FCFirst, 86, 87
kgrid.MonkhorstPack, 64, 79 MD.FCLast, 87
MD.FinalTimeStep, 82
LatticeConstant, 27 MD.FIRE. TimeStep, 81
LatticeParameters, 27 MD.FireQuench, 81
LatticeVectors, 27, 28, 33 MD.Initial Temperature, 82
LDAU.CutoffNorm, 87, 83 MD.Initial TimeStep, 82
LDAU.EnergyShift, 87, 83 MD.LengthTimeStep, 81, 82
LDAU.Firstlteration, 88 MD.MaxCGDispl, 80, 81, 89
LDAU.PopTol, 88 MD.MaxForceTol, 80, 89
LDAU.PotentialShift, 88 MD.MaxStressTol, 80

117

MD.NoseMass, 83
MD.NumCGsteps, 80
MD.ParrinelloRahmanMass, 83
MD.PreconditionVariableCell, 80
MD.RelaxCellOnly, 80
MD.RemovelntramolecularPressure, 82
MD.TargetPressure, 80, 82
MD.TargetStress, 80, 82
MD.Target Temperature, 82
MD.TauRelax, 83
MD.TypeOfRun, 69, 78, 80-83, 86, 88

Anneal, 79

Broyden, 78

CG, 78

FC, 79

FIRE, 78

Forces, 79

Lua, 78, 79

Master, 78, 79

Nose, 79

NoseParrinelloRahman, 79

ParrinelloRahman, 79

Verlet, 79
MD.UseSaveCG, 81
MD.UseSaveXV, 81
MD.VariableCell, 50, 78, 80, 82
MeshCutoft, 25, 36, 48, 79, 89
MeshSubDivisions, 48
MinSCFlterations, 38
MM, 74

Cutoftf, 75

Grimme.D, 75

Grimme.S6, 75

Potentials, 74

UnitsDistance, 75

UnitsEnergy, 75
MPI

Nprocs.SIESTA, 57
MullikenInSCF, 65

NaiveAuxiliaryCell, 51
NeglNonOverlaplnt, 50
NetCharge, 70-72
New
A.Parameter, 26
B.Parameter, 26
NumberOfAtoms, 15, 27, 28
NumberOfEigenStates, 51, 52
NumberOfSpecies, 15

OccupationFunction, 53
OccupationMPOrder, 53
OMM
BlockSize, 54, 55
Diagon, 54
DiagonFirstStep, 54
Eigenvalues, 55
LongOutput, 55
Precon, 54
PreconFirstStep, 54
ReadCoeffs, 55
RelTol, 55
TPreconScale, 55
Use2D, 54, 55
UseCholesky, 54
UseSparse, 54
WriteCoeffs, 55
ON
Etol, 55
ON.ChemicalPotential, 56
ON.ChemicalPotential.Order, 56
ON.ChemicalPotential.Rc, 56
ON.ChemicalPotential. Temperature, 56
ON.ChemicalPotential.Use, 56
ON.eta, 54, 56

118

ON.eta.alpha, 56 FixSplitTable, 20, 21

ON.eta.beta, 56 NewSplitCode, 20, 21
ON.Etol, 55 0Ol1dStylePolOrbs, 24
ON.functional, 55 SoftDefault, 18, 21, 23
ON.LowerMemory, 56 SoftInnerRadius, 21
ON.MaxNumlter, 55 SoftPotential, 21
ON.RcLWF, 56 SplitNorm, 19, 20, 23
ON.UseSaveLWF, 57 SplitNormH, 20, 23
Optical.Broaden, 67 SplitTailNorm, 21
Optical.Energy.Maximum, 67 PAO.Basis, 87
Optical. Energy.Minimum, 67 PAO.EnergyShift, 87
Optical.Mesh, 67 PartialChargesAtEveryGeometry, 66
Optical. NumberOfBands, 67 PartialChargesAtEverySCFStep, 66
Optical.OffsetMesh, 67 PDOS kgrid.Cutoff, 64
Optical.PolarizationType, 67 PDOS .kgrid.MonkhorstPack, 64
Optical.Scissor, 67 PEXSI
Optical.Vector, 67 deltaE, 57
OpticalCalculation, 66 DOS, 61
Ef Reference, 61
PAO Emax, 61
Basis, 15, 17—20, 23, 24 Emin. 61
BasisSize, 19, 20, 23 NPoi£1ts, 61

DZ, 20 Gap, 57

DZP, 20 Inertia-Counts, 59

minimal, 20 Inertia-energy-width-tolerance, 60

SZ, 20 Inertia-max-iter, 60

SZP, 20

Inertia-min-num-shifts, 60
Inertia-mu-tolerance, 60
lateral-expansion-inertia, 60

BasisSizes, 20
BasisType, 17, 19-21, 23

filteret, 19 LDOS, 61

nodes, 19 Broadening, 61
nonodes, 19 Energy, 61
split, 19 NP-per-pole, 61
splitgauss, 19 mu, 59

ContractionCutoff, 21
EnergyCutoff, 21
EnergyPolCutoff, 21
EnergyShift, 19, 20, 23-26

mu-max, 59
mu-max-iter, 59
mu-min, 59

119

mu-pexsi-safeguard, 59
NP-per-pole, 57, 58, 61
NP-symbfact, 58
num-electron-tolerance, 58

num-electron-tolerance-lower-bound, 58
num-electron-tolerance-upper-bound, 58

NumPoles, 57

Ordering, 58

safe-dDmax-ef-inertia, 60

safe-dDmax-ef-solver, 60

safe-dDmax-no-inertia, 59

safe-width-ic-bracket, 60

safe-width-solver-bracket, 60

Verbosity, 57, 58
PolarizationGrids, 67, 68
ProcessorY, 75
ProjectedDensityOfStates, 64
PS

lmax, 21, 22
PS.KBprojectors, 22

RcSpatial, 76
Reparametrize.Pseudos, 26
Restricted.Radial.Grid, 26
Rmax.Radial.Grid, 26

S.Only, 45

SaveBaderCharge, 74
SaveDeltaRho, 73
SaveElectrostaticPotential, 73, 78
SaveHS, 50

Savelnitial ChargeDensity, 74
SavelonicCharge, 73
SaveNeutral AtomPotential, 73
SaveRho, 73

SaveRhoXC, 73
SaveTotalCharge, 74
SaveTotalPotential, 73

SCF
MustConverge, 38
RecomputeHA fterSCF, 42
RecomputeHAfterScf, 42
Want. Variational EKS, 37
SCF.DebugRhoGMixing, 43
SCF.DM
Converge, 47, 80
Tolerance, 47
SCF.EDM
Converge, 47
Tolerance, 47
SCF.FreeE
Converge, 47
Tolerance, 47
SCF.H
Converge, 47, 48, 80
Tolerance, 36, 47
SCF.Harris
Converge, 47, 48
Tolerance, 47, 48
SCF Kerker.q0sq, 43
SCF.Mix, 36, 38, 42
AfterConvergence, 42
First, 38, 42, 71
Spin, 38
SCF.MixAfterConvergence, 37, 46
SCF.MixCharge
SCF1, 43
SCF.Mixer
History, 39, 40
Kick, 39, 40
Kick.Weight, 39
Linear.After, 40
Linear. After.Weight, 40
Method, 38-40
Restart, 40

120

Restart.Save, 40
Variant, 38-40
Weight, 39, 40
SCF.Mixer.<>, 40
history, 40
iterations, 40
method, 40
next, 40
next.conv, 40
next.p, 41
restart, 40
restart.p, 41
restart.save, 40
variant, 40
weight, 40
weight.linear, 39, 40
SCF.Mixers, 40
SCF .MonitorForces, 37
SCF.Read.Charge.NetCDF, 45

SCF.Read.Deformation.Charge.NetCDF, 45

SCF.RhoG.DIIS.Depth, 43

SCF.RhoG.Metric.Preconditioner.Cutoff, 43

SCF.RhoGMixingCutoff, 43
Siesta2Wannier90.NumberOfBands, 70

Siesta2Wannier90.NumberOfBandsDown, 70
Siesta2Wannier90.NumberOfBandsUp, 70

Siesta2Wannier90.UnkGrid1, 70
Siesta2Wannier90.UnkGrid2, 70
Siesta2Wannier90.UnkGrid3, 70
Siesta2Wannier90.UnkGridBinary, 70
Siesta2Wannier90. WriteAmn, 69
Siesta2Wannier90.WriteEig, 69
Siesta2Wannier90. WriteMmn, 69
Siesta2Wannier90.WriteUnk, 70
SimulateDoping, 71
SingleExcitation, 36
SlabDipoleCorrection, 71

SolutionMethod, 33, 51, 53, 54, 91, 94
Spin, 34-36, 44, 54

Fix, 35, 36, 54

OrbitStrength, 37

Spiral, 34

Total, 36, 54
SuperCell, 27, 28, 33
SyntheticAtoms, 15
SystemLabel, 12, 13, 15, 31, 92
SystemName, 15

TimeReversalSymmetryForKpoints, 33
TimerReportThreshold, 77
TS
Analyze, 94, 96
Atoms.Buffer, 94
BTD
Optimize, 97
Pivot, 96
Spectral, 97
ChargeCorrection, 95
Factor, 95
Fermi.Max, 95
Fermi.Tolerance, 95
ChemPot.<>, 100
chemical-shift, 100
contour.eq, 100, 101
contour.eq.pole, 100
contour.eq.pole.N, 100
ElectronicTemperature, 94, 100
kT, 100
mu, 100
Temp, 100
ChemPots, 98, 99
Contour.<>, 101, 102
delta, 101
from, 101
method, 101

121

opt, 101

part, 101

points, 101
Contour.nEq.<>, 102
Contours

Eq.Pole, 101

Eq.Pole.N, 101
Contours.nkEq, 102

Eta, 102

Fermi.Cutoff, 102
DE.Save, 96
Elec.<>, 97-99

Accuracy, 98, 99

Bloch, 98

Bulk, 98, 99

chemical-potential, 98

DE, 98

DM-Update, 98, 99, 103

electrode-position, 98

Eta, 98, 99

Gf, 98

Gf-Reuse, 98, 99

HS, 98

Out-of-core, 99

pre-expand, 98

semi-inf-direction, 98

used-atoms, 98
Elecs, 96, 97, 99

Accuracy, 98, 99

Bulk, 99

Coord.EPS, 99

DM.Init, 94, 99

DM.Update, 99

Eta, 98, 99

Gf.Reuse, 99

Neglect.Principal, 93, 99

Out-of-core, 99

ElectronicTemperature, 94, 100, 102

Fermi.Initial, 94

Forces, 95

Hartree.Fix, 97
Frac, 97

HS.Save, 95

MUMPS
BlockingFactor, 97
Memory, 97
Ordering, 97

Poisson, 97

S.Save, 96

SCF .Initialize, 94

SIESTA.Only, 96

SolutionMethod, 94, 96

Voltage, 94

Weight.k.Method, 95

Weight.Method, 94
mean, 95
orb-orb, 94
sum-atom-atom, 95
sum-atom-orb, 95
tr-atom-atom, 94
tr-atom-orb, 95

TS.Elec.<>
check-kgrid, 99
TS.SolutionMethod, 96

Use.Blocked. WriteMat, 45, 46
UseDomainDecomposition, 76
UseParallelTimer, 77
User

Basis, 25

Basis.NetCDF, 25
User.Basis, 16
UseSaveData, 32, 77, 81
UseSpatialDecomposition, 76
UseStructFile, 31, 32

122

UseTreeTimer, 77

WarningMinimumAtomicDistance, 32
WaveFuncKPoints, 63, 66, 76
WaveFuncKPointsScale, 63
WEFS.Band.Max, 63, 66
WFS.Band.Min, 63, 66
WFS.Energy.Max, 63, 66
WEFS.Energy.Min, 63, 66
WES.Write.For.Bands, 63
Write

Denchar, 77

DM, 45, 46

DM.end.of.cycle, 46

DM.History.NetCDF, 46

DM.NetCDF, 46

DMHS.History.NetCDF', 46, 50

DMHS.NetCDF, 46, 50

Graphviz, 20

H, 46

H.end.of.cycle, 46

TSHS.History, 46
WriteBands, 62
WriteCoorCerius, 31
WriteCoorlnitial, 83
WriteCoorStep, 14, 32, 83
WriteCoorXmol, 31
WriteEigenvalues, 14, 53, 64
WriteForces, 14, 83
WriteHirshfeldPop, 65
WritelonPlotFiles, 25
WriteKbands, 14, 62
WriteKpoints, 14, 34
WriteMDHistory, 31, 83, 84
WriteMDXmol, 31, 84
WriteMullikenPop, 14, 65
WriteOrbMom, 36, 37
WriteVoronoiPop, 65

WriteWaveFunctions, 14, 63

XC
Authors, 34
Functional, 34
Hybrid, 35
XML
Write, 107

M

UnitsAngle, 30

UnitsLength, 30
ZM.ForceTolAngle, 81
ZM.ForceTolLength, 81
ZM.MaxDisplAngle, 81
ZM.MaxDisplLength, 81
Zmatrix, 27, 28, 80, 82

123

	Contributors to
	INTRODUCTION
	COMPILATION
	The build directory
	Multiple-target compilation

	The arch.make file
	Parallel
	MPI
	OpenMP

	Library dependencies

	EXECUTION OF THE PROGRAM
	Specific execution options

	THE FLEXIBLE DATA FORMAT (FDF)
	PROGRAM OUTPUT
	Standard output
	Output to dedicated files

	DETAILED DESCRIPTION OF PROGRAM OPTIONS
	General system descriptors
	Pseudopotentials
	Basis set and KB projectors
	Overview of atomic-orbital bases implemented in SIESTA
	Type of basis sets
	Size of the basis set
	Range of the orbitals
	Generation of multiple-zeta orbitals
	Soft-confinement options
	Kleinman-Bylander projectors
	The PAO.Basis block
	Filtering
	Saving and reading basis-set information
	Tools to inspect the orbitals and KB projectors
	Basis optimization
	Low-level options regarding the radial grid

	Structural information
	Traditional structure input in the fdf file
	Z-matrix format and constraints
	Output of structural information
	Input of structural information from external files
	Input from a FIFO file
	Precedence issues in structural input
	Interatomic distances

	k-point sampling
	Output of k-point information

	Exchange-correlation functionals
	Spin polarization
	Spin–Orbit coupling
	The self-consistent-field loop
	Harris functional and basic options
	Mixing options
	Mixing of the Charge Density
	Initialization of the density-matrix
	Initialization of the SCF cycle with charge densities
	Output of density matrix and Hamiltonian
	Convergence criteria

	The real-space grid and the eggbox-effect
	Matrix elements of the Hamiltonian and overlap
	The auxiliary supercell

	Calculation of the electronic structure
	Diagonalization options
	Output of eigenvalues and wavefunctions
	Occupation of electronic states and Fermi level
	Orbital minimization method (OMM)
	Order(N) calculations

	The PEXSI solver
	Pole handling
	Parallel environment and control options
	Electron tolerance and the PEXSI solver
	Inertia-counting
	Re-use of information accross iterations
	Calculation of the density of states by inertia-counting
	Calculation of the LDOS by selected-inversion

	Band-structure analysis
	Format of the .bands file
	Output of wavefunctions associated to bands

	Output of selected wavefunctions
	Densities of states
	Total density of states
	Partial (projected) density of states
	Local density of states

	Options for chemical analysis
	Mulliken charges and overlap populations
	Voronoi and Hirshfeld atomic population analysis
	Crystal-Orbital overlap and hamilton populations (COOP/COHP)

	Optical properties
	Macroscopic polarization
	Maximally Localized Wannier Functions
	Systems with net charge or dipole, and electric fields
	Output of charge densities and potentials on the grid
	Auxiliary Force field
	Parallel options
	Parallel decompositions for O(N)

	Efficiency options
	Memory, CPU-time, and Wall time accounting options
	The catch-all option UseSaveData
	Output of information for Denchar
	NetCDF (CDF4) output file

	STRUCTURAL RELAXATION, PHONONS, AND MOLECULAR DYNAMICS
	Compatibility with pre-v4 versions
	Structural relaxation
	Conjugate-gradients optimization
	Broyden optimization
	FIRE relaxation

	Target stress options
	Molecular dynamics
	Output options for dynamics
	Restarting geometry optimizations and MD runs
	Use of general constraints
	Phonon calculations

	LDA+U
	External control of SIESTA
	Examples of Lua programs

	TRANSIESTA
	Brief description
	Source code structure
	Compilation
	Running a fast example
	Brief explanation
	Electrodes
	TranSIESTA Options
	Quick and dirty
	General options
	Algorithm specific options
	Poisson solution for fixed boundary conditions
	Electrode description options
	Chemical potentials
	Complex contour integration options
	Bias contour integration options

	Matching TranSIESTA coordinates: basic rules
	Output
	Utilities for analysis: TBtrans

	ANALYSIS TOOLS
	SCRIPTING
	PROBLEM HANDLING
	Error and warning messages

	REPORTING BUGS
	ACKNOWLEDGMENTS
	APPENDIX: Physical unit names recognized by FDF
	APPENDIX: XML Output
	Controlling XML output
	Converting XML to XHTML

	APPENDIX: Selection of precision for storage
	APPENDIX: Data structures and reference counting
	Bibliography
	Index

