Dynamics of chemical reactions of multiply-charged cations: Information from beam scattering experiments

Zdenek Herman*

V. Čermák Laboratory, J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, Dolejškova 3, 182 23 Prague 8, Czech Republic

ARTICLE INFO

Article history:
Received 30 May 2014
Received in revised form 9 July 2014
Accepted 9 July 2014
Available online 11 July 2014

Keywords:
Multiply-charged ions
Dynamics of chemical reactions
Beam scattering

ABSTRACT

Results of beam scattering experiments on dynamics of chemical (bond-forming) reactions of molecular dications and trications are briefly reviewed. Both studies of crossed-beam scattering experiments and experiments using advanced position-sensitive coincidence method and their achievements that added to a better understanding of collisional mechanisms and energy deposition in products of this class of processes are discussed. In addition, results of other non-scattering methods (mass spectrometric, guided beam, time-of-flight) are briefly mentioned, if relevant to the subject of the paper.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

For many decades the stage of ion chemistry and physics was dominated by studies of properties and collision processes of singly-charged ions, cations, and to a lesser extent anions. In the past forty years or so, the interest in studies of multiply-charged ions has been growing rapidly. This is evidenced by reviews articles on properties of multiply-charged ions [1], on the stability of multiply-charged molecular species [2], on their spectroscopy [3,4], and on their gas-phase reactivity [5–8].

Studies of multiply-charged ions as collision species date back to interest of physicists in electron transfer (charge transfer, electron exchange) processes, e.g.,

\[A^{n+} + B \rightarrow A^{(n-1)+} + B^+ \]

(1)

(where A, B are atoms or simple molecules) over a wide range of energies, especially at energies of 100 eV and higher (up to keV). Several reviews provide an overview of the work done [5,8–10]. Rather naturally, the first objective was to study the electron transfer processes of atomic multiply-charged ions with atomic ions. Though the existence of molecular multiply-charged ions has been known since the twenties [11], more detailed information–both experimental and theoretical–on the stability of these species, their electronic structure, spectroscopic properties, energetics, and their behavior in collisions–in particular in electron transfer processes–came in the eighties and nineties. Models have been developed [1,9,10] to describe electron transfer between an atomic doubly-charged ion and a neutral atomic target, a specific variant of Reaction (1). Transitions between potential terms of the reactants (ion-induced dipole interaction dication–neutral) and the products (Coulomb repulsion between two singly-charged ions), crossing at acute angles, are well localized. The Landau–Zener (L–Z) formalism can be then applied in most cases to describe the transition probability. An important conclusion of this approach is the “reaction window” concept: the electron transfer process proceeds efficiently only if the crossings between the reactant and product potential energy terms fit into a certain range of internuclear separations (qualitatively, for internuclear separations too large, the terms cross diabatically for small separations, they are adiabatically split–in both cases the reactant–product transitions are hindered).

In view of the fact that electron transfer processes have been studied by beam methods (translational energy spectroscopy) mostly at fairly large collision energies, it is not surprising that information on chemical reactions of multiply-charged ions (sometimes referred to as bond-forming reactions), namely reactions of the type

\[A^{2+}BC \rightarrow AB^+ + C^+ \]

(2)

came from a different type of experiments whose domain were thermal or near-thermal collision energies (flowing afterglows, Fourier transform ion cyclotron resonance – FT ICR). The first experiments concerned atomic metal dications and probably the very first mention of such reactions was contained in a flowing afterglow study of electron transfer processes between Ca\(^{2+}\) and Mg\(^{2+}\) with simple molecules, indicating the possibility of
formation of CaO⁺ + NO⁺ in reactions of these ions with NO₂ [12]. Formation of NO₂ in the reaction of O₂⁺ with NO was mentioned in a selected-ion drift tube study of rate coefficients of the oxygen dication reactions [13]. An important flowing afterglow study [14,15] of the reactivity of Ti²⁺ with simple alkanes and a comparison with reactivity of the respective singly-charged metal ion described a series of chemical reactions of the metal dication, effectively competing with electron transfer processes. FT ICR studies [16–18] of the reactivity of other metal dications (Nb²⁺, Ta²⁺, Zr²⁺, La²⁺, Y²⁺) with C1–C4 alkanes revealed, beside effective electron transfer, formation of protonated metal cations MeH⁺ in chemical reactions of the type

\[
\text{Me}^{2+} + \text{RH} \rightarrow \text{MeH}^+ + \text{R}^+ \tag{3}
\]

and also the formation of dication chemical products, e.g. [16]

\[
\text{Nb}^{2+} + \text{CH}_4 \rightarrow \text{NbCH}_2^{2+} + \text{H}_2 \tag{4}
\]

Bond-forming reactions of mixed metal cluster dications (e.g. LaFe²⁺, YFe²⁺) and alkanes were described, too [16]. Guided-beam and theoretical studies of reactions between Ta²⁺ and methane [19] provided information on bond energies of the species involved, mapped the potential energy surfaces and intermediates and suggested that the products were formed through a H–Ta³⁺–CH₃ intermediate.

However, it was only in 1994 that chemical reactions of non-metal molecular dications as CF²⁺, CF₂⁺, CF₂CO₂⁺, or OCS²⁺ [20] with simple molecules (D₂, O₂, N₂, NO, CO) were described. The authors used a crossed-beam arrangement combined with a time-of-flight product detection and described a series of both non-dissociative and dissociative electron transfer and bond-forming reactions of the dications together with the relative abundance of different product ions formed; the results were consistent with the Landau–Zener curve-crossing mechanism. The bond-forming reactions were of two different classes, transfer of a negative ion to the dication or a positive ions transfer to the neutral reactant. This opened a way for detailed studies of the dynamics of reactions of molecular dications in scattering crossed-beam experiments.

This review concentrates largely on results of beam scattering studies of the dynamics of bond-forming reactions of molecular dications and their mechanisms in which both velocity and angle of the product ions were determined. Other beam experiments are discussed only if related to this subject. Electrospray ionization has provided an excellent way to produce multiply-charged metal clusters, liganded and solvated metal clusters [21], biopolymer ions and enabled studies of their properties, dissociations, and reactivity. Also, it enabled studies of multiply-charged (positive or negative) ion–ion (negative or positive) reactions as reviewed elsewhere [22]. However, these results will not be discussed in this article.

2. Experimental methods

A typical low-resolution crossed-beam apparatus used in the early studies of dication electron transfer and bond-forming reactions of, e.g., CF₂⁺ [23,24] or CO₂⁺ [25] with deuterium was the Prague apparatus EVA II (Fig. 1) [23,26]. The dications were produced by impact of 130 eV electrons on a suitable gas (CF₄, CO₂, CH₂Cl) in a low pressure ion source. Ions were extracted, mass analyzed, and detected with the use of a four-sector magnetic mass spectrometer, mass analyzed, and detected with the use of a dynode electron multiplier. Angular distributions were obtained by rotating the two beams about the scattering center. Modulation of the neutral beam and phase-sensitive detection of the ion products was used to remove the background scattering effects. Laboratory angular distributions and energy profiles recorded at a series of laboratory scattering angles were used to construct scattering diagrams of the product ions showing contours of the Cartesian probability distribution [26] and normalized to the maximum in the particular scattering diagram. Center-of-mass (CM) angular distributions (relative differential cross sections), \(P(\theta_{\text{CM}}) \), relative translational energy distributions, \(P(T') \), vs. \(T' \), of the product ions were obtained by appropriate integration of the scattering diagrams [26] (the designation \(T' \) is used for

![Fig. 1. Schematics of the crossed-beam apparatus EVA II.](attachment:image.png)
relative translational energy of products and T for relative translational energy of reagents). A certain limitation of these studies is interpretation of dissociative reactions in which more than two products are formed. Detection of only one product ion requires the assumption that further dissociation of the product ion takes place subsequently to the interaction of the dication–neutral reagents. This assumption appeared to be correct in the systems studied, but coincidence experiments on other systems indicated that this may not be always the case.

The crossed-beam scattering method that has overcome this problem was the position-sensitive coincidence method (PSCO) developed for studies of dication collisions at the University College London, based on the detection of pairs of fragment ions [27–29]. The apparatus (Fig. 2) produced ions by electron impact ionization from a suitable precursor gas, the ions (singly- and doubly-charged) were extracted from the ion source and passed through a hemispherical analyzer of a good resolution and transmission (final energy spread set to about 0.3 eV). The ion beam was then pulsed across a small aperture and the pulsed packets of ions were formed by a series of focusing and accelerating lenses, passed through a commercial velocity filter to produce dication packets that were decelerated to a desired incident energy of a few eV. They interacted then with the neutral gas emerging from an effusive jet in the source/reaction of the time-of-flight mass spectrometer (TOF-MS). In the source region, originally field-free, a strong voltage pulse was applied to the ion

Fig. 2. Schematics of the position-sensitive coincidence apparatus (PSCO). Insets are enlargements of the ion source and the dication–neutral reaction zone localized in the source region of the time-of-flight mass spectrometer.

Fig. 3. Relative total cross sections of non-dissociative electron transfer and chemical reactions of CF$_2^+$ with H$_2$ and D$_2$ (left) and for the dissociative reactions (right) as a function of the reagent relative velocity v_{rel}. The solid line is the Landau-Zener fit for the electron transfer reaction.
repeller plate which started the TOF analysis. The arrival times of ions were collected on a pair of multi-channel plates and by emission of electrons from them their position on the position-sensitive detector. The arrival of each ion was then characterized by five times (4 from wires of the position-sensitive system and one from the multi-channel plate). A dataset of 10 times characterizing each pair of ions was available and the data were further processed off-line. The final products were scattering diagrams usually plotted so that the upper and lower halves showed the velocities of the two ions of the detected pair (see later on). Though the diagrams were somewhat different from the earlier conventional scattering diagrams, the data could be obviously used to obtain the same dynamical quantities. The coincidence experiments have been especially useful in studying the dynamics of dissociative bond-forming reactions and greatly enhanced the possibilities of scattering experiments.

Crossed-beam devices without angular and energy analysis were used in determining total cross sections and branching of products of bond-forming reactions of dication [20,30].

Other beam methods used to study chemical reactions of molecular dications include different mass spectrometric methods [31,32], guided-beam methods [33] or a special apparatus combining selected-ion-flow-tube with the guided ion beam method [31], in combination with isotope labeling and appearance energy measurements of ions.

3. Results

3.1. Crossed beam scattering experiments

3.1.1. CF₂⁺ + D₂: Competition of electron transfer and chemical reactions

The system CF₂⁺ + D₂ → CF₂D⁺ + D⁻ (5)

Relative total cross sections of all these processes were measured [24]. They are shown in Fig. 3 plotted against the relative velocity of the colliding reagents. The cross section for the dominating electron transfer increased with increasing relative velocity, it was the same for both D₂ and H₂ and its shape was consistent with relations derived from the Landau–Zener formalism. The dissociative process to CF⁺ (about 30% of the non-dissociative electron transfer) also increased in a similar way (Fig. 3) and so pointed out to subsequent dissociation of the electron transfer product CF₂⁺. The total cross section of the product of the bond-forming Reaction (6) at first slightly increased and then slowly decreased with increasing v_rel (Fig. 3). There was a
clear isotope effect favoring chemical Reaction (6) with H₂ over D₂ by about 1.5 – 2. The dissociative product CFD⁺ (Fig. 3) evidently originated from further dissociation of CF₂D⁺.

Fig. 4 shows the respective scattering diagrams of CF₂D⁺ and CF⁺ at a collision energy of 1.0 eV. The diagrams are superficially similar. The non-dissociative electron transfer (CF⁺) shows a strongly forward scattered product, as in other electron transfer processes studied before (see, e.g., Ref. [8,34]), reflecting an electron transfer prevalently at larger internuclear distances with small angular deflection from the original direction of the colliding species. The product of the chemical non-dissociative reaction shows a little more of backward scattering, indicating partly more intimate encounters. This is reflected in the CM angular distributions (relative differential cross sections) in Fig. 5, where the backward scattering in case of the chemical reaction is somewhat stronger (the anomaly at 0.30 eV is probably and experimental inaccuracy). Fig. 6 summarizes the data on relative translational energy distributions of both reaction products, P(T') vs. T'. Due to the inconvenient mass ratio of the products and the small recoil of heavy CF₂ and CF₂D⁺ on D₂ and D⁺, respectively, and the resulting spread in the scattering diagrams, the translational energy distribution tail much beyond the limit set by the total energy available in the reactions (exoothermicity estimated at that time as 5.04 eV for Reaction (5) and 7.60 eV for Reaction (6)). The positions of the maxima in the P(T') vs. T' plots for the electron transfer reaction (Fig. 6) were compared with maxima from of the P(T') curves from collisions of CF₂⁺ with Ar [35]; from the differences of the maxima, it could be concluded that about 1 or 2 vibrational quanta were most probably deposited as internal excitation of the other electron transfer product D₂. These experimental conclusions were supported by subsequent theoretical investigations of stationary points on the potential energy hypersurface [36].

On the basis of the available data, a simple potential model could be suggested which accounted for a competition of electron transfer and chemical reactions in the system molecular dication–neutral molecule [5,23,24]. A schematic of the model is given in Fig. 7: as the reactants (A²⁺ + BC) approach in the valley of the reactants on the dication surface, they meet with the Coulomb repulsive curves leading to the electron transfer products A⁺ + BC⁺ and may exit to these products, if the respective curve lies in some part of the reactions window, giving prevalently or partly A⁺ + BC⁺. Only those reagent systems that did not end as electron transfer products continue further on the dication potential energy surface along the reaction coordinate and into the valley of the bond-forming products. There they cross with Coulomb repulsive curves leading to AB⁺ + C and may leave to end up as these chemical products. The model gives yet another possibility, namely, if the reactant systems end neither as electron transfer products A⁺ + BC⁺ nor chemical reaction products AB⁺ + C⁺, they may continue of the dication potential energy surface along the reaction coordinate and into the product valley and lead to dication–neutral bond-forming reactions AB₂⁺ + C. The reactions of this type were observed earlier (see Reaction (4)) and recently in observation of the reactions like [37]

\[\text{Ar}^{2+} + \text{N}_2 \rightarrow \text{ArN}^{2+} + \text{N} \] (7)

Formation of the ArN²⁺ in this collision system represented only a small, but important fraction of the dominant electron transfer. The model was successfully applied in many cases including reactions of multiply-charged fullerenes with molecules [38] and, quite recently, to reactions of triply-charged ions with neutral molecules [39]. Also, it is in agreement with the occurrence of bond-forming reactions of aryl dications with small and larger

Fig. 6. Relative translational energy distributions, P(T') vs. T', of products from Reactions (5) and (6) at the indicated collision energies T. Arrows mark the maximum energy available in the reactions.
molecules leading to dication products and carbon-chain building, as will be mentioned later on.

The model rationalizes relative probabilities of electron transfer and chemical reactions of dications depending on the mutual ratio of ionization energies of the species involved. If, for instance, the difference between the first and second ionization energy of the dication is smaller or comparable to the ionization energy of the neutral partner, the electron transfer is suppressed and there is a larger probability of bond-forming reactions, as in the case of earlier mentioned reactions of some metal dications with molecules [15,16].

3.1.2. CO2⁺ + D₂: Complex formation and subsequent dissociative processes

Relative total cross sections for the formation of products of collisions between CO2⁺ and D₂ [25] showed (Fig. 8) that the main process was non-dissociative electron transfer

\[
\text{CO}_2^+ +
\]

The cross section had little dependence on the relative velocity indicating that several states participate in the formation of the product, from the scattering data preferentially the CO⁺ (\(A^2Π\)) and

\[
\text{COH}^+ + \text{Q}(\text{P}) + \text{H}^+ \quad (4.8)
\]

\[
\text{HCO}^+ + \text{O}(\text{P}) + \text{H}^+ \quad (5.4)
\]

Fig. 8. Relative total cross sections for formation of products of reactions in the CO2⁺ + D₂ system as a function of the relative velocity of the reagents, \(v_R\).

Fig. 9. Stationary points on the potential energy surface of (CO2H2)⁺. Numbers refer to the calculated values of energies of the species, intermediates, and transition states.
Experimental results: for electron transfer Reaction (8), population of CO system were calculated for the ground state of the CO\(_2\) section. Stationary points on the potential energy surface of the substantial cross section, about 10% of the electron transfer cross decomposition of intermediates CO\(_2\)D\(_2\) (Fig. 9) and the calculations provided a justification resulting from subsequent unimolecular decomposition of the higher-energy-release bond-forming product CO\(_2\)D\(_2\) dissociating with an energy release COD\(^+\)–D of about 0.1–0.2 eV.

3.1.3. CHCl\(^+\) + D\(_2\): Facile proton transfer in chemical reactions of hydrogen-containing dications

The halogen-substituted dications of methylene CHX\(^+\), containing one hydrogen atom, were subjected to crossed-beam investigation of reactions with deuterium and rare gases. A study of reactions of CHCl\(^+\) showed that besides electron transfer leading to CHCl\(^+\), two chemical reactions took place, namely [40]

\[
\text{CHCl}^+ + D_2 \rightarrow \text{CHDCI}^+ + D^+ \quad (10)
\]

and

\[
\text{CHCl}^+ + D_2 \rightarrow \text{CCI}^+ + \text{HD}^+ \quad (11)
\]

Detailed studies of electron transfer with rare gases [41] and adjoining theoretical studies [41,42] showed that two isomers of the dication of different energetics, with H bonded to the C atom (HC\(_2\)Cl\(^+\)) or to the Cl atom (CC\(_2\)H\(^+\)), existed in the beam.

The scattering diagram of CHDCI\(^+\) from Reaction (10) showed two pairs of peaks symmetrically located forward and backward with respect to the CM (Fig. 12). The inner pair of peaks, equal in intensity with the most probable translational energy release of about 1.1 eV implied a decomposition of a long-lived intermediate. The outer pair of peaks, uneven in intensity, with the most probable translational energy release of about 4.7 eV suggested a shorter-lived intermediate of an average lifetime of approximately one average rotation of the of a prolate complex, close to linear in its transition state. Theoretical calculations [42] showed several pathways involving both isomers of the dication and resulting in product cation of structures (H–C–Cl–H\(^+\)) and (H\(_2\)CC\(_{17}^+\)). The collision resulted in both cases in a loosely-bound intermediate dication which dissociated directly to CH\(_2\)Cl\(^+\) + H\(^+\) and could be identified with the short-lived complex (outer peaks in Fig. 12). Alternately, the primary intermediate rearranged to the dication H\(_2\)C\(_{17}^+\) and several pathways with rather deep minima were consistent with the decomposition of the long-lived intermediate [42].

The scattering diagram for CCl\(^+\) from Reaction (11) exhibited (Fig. 13) a pair of peaks of about equal intensity symmetrically forward and backward from the center-of-mass. Analysis of the data and theoretical calculations led to the conclusion that this product resulted from further decomposition of vibrationally excited primary product of Reaction (10), CHDCI\(^+\). However, the main feature in the diagram was a very strong forward peak, implying a direct mechanism of the reaction, with a high translational energy release of 5.6 eV, close to the exothermicity of Reaction (11), 5.3 eV. This strongly suggested a proton transfer Reaction (11) leading to CCl\(^+\) and D\(_2\)H\(^+\) as the other reaction product (this product scattered backward over a wide range of angles could be only barely identified among the reaction products). The facile proton transfer reaction from dications...
containing hydrogen turned out to be a rather frequent reaction of these species with molecules.

Analogous conclusions could be drawn from experimental and theoretical studies of the reactions between CHBr$_2^+$ and molecular hydrogen [43]. Two isomeric forms of the dication were identified, too, and the prominent chemical reaction was proton transfer and formation of CBr$^+ +$ H$_2$. Theoretical calculations fully supported the experimental results obtained from beam scattering and deuterium labeling experiments. An important addition to the beam experiments came from comparison of the data on reactivity of CHX$_2^+$ dications (X = F, Cl, Br, I) with a series of atoms and simple non-polar and polar molecules [44]. Competition between electron transfer and bond-forming reactions showed that with atoms and non-polar molecules electron transfer was the dominant process, if its exothermicity fell into the reaction window. However, with polar molecules (CO, H$_2$O, HCl) proton transfer became much more important (from a few percent for non-polar neutrals to 20–60% for polar neutrals). The reason for it might be in the enhanced lifetime of collision complexes with polar neutral reagents [44].

Another system with hydrogen-containing dication studied by crossed-beam scattering and by tandem (quadrupole–octupole–quadrupole) mass spectrometric techniques was the interaction of the hydrocarbon dication C$_4$H$_2^+$ with a series of atoms (Kr, Xe) and molecules (H$_2$, N$_2$, NO, NH$_3$, C$_2$H$_2$, CH$_4$) [45]. Both non-dissociative electron transfer reaction

$$C_4H_2^+ + M \rightarrow C_4H^+ + M^+ \quad (12)$$

and chemical reaction

$$C_4H_2^+ + M \rightarrow C_4H_2^+ + MH^+ \quad (13)$$

was observed. The results were complicated by the dissociative electron transfer reaction

$$C_4H_2^+ + M \rightarrow C_4H^2 + +H + M^+ \quad (14)$$

This required detailed analysis of the scattering diagrams and of the product relative translational energy distributions with the help of a new critical evaluation of the energetics of the dication C$_4$H$_2^+$ and other hydrocarbon species involved. Chemical reaction (13) was found to be a strong-forward peaked direct process. Relative probabilities of reactions (12)–(14) showed the predominant role of electron transfer and dissociative electron transfer (Fig. 14), with the exception of the reaction with polar NH$_3$ (50% of bond-forming reaction (13)), in agreement with conclusions of [44].

![Fig. 11. Contour scattering diagram of COD$^+$ at two collision energies. The dash-dotted circle about the CM indicates the location of inner maxima of the CO$_2$D$^+$ velocity profiles (Fig. 10). The circles about the intersections of this circle with the direction of the relative velocity (horizontal line) indicate centers for the slow dissociative process leading to forward–backward wings of the COD$^+$ scattering.](image-url)
3.1.4. More complex reactions

A computational and experimental investigation of HCF₂⁺ formation [46] in reaction
\[
\text{CF}_2^+ + \text{D}_2 \rightarrow \text{DCF}^+ + (\text{F} + \text{D})^+ \tag{15}
\]
resulted in “ab initio” quantum chemical calculations of the species involved and of the stationary points on the potential hypersurface of this system (Fig. 15). Two different pathways were identified leading to H⁺ + F and HF⁺ products. The crossed beam experiments revealed two distinct channels of DCF₂⁺ formation with different translational energy release (Fig. 15). A comparison between reaction exothermicities and translational energy release for different combinations of products led to the final interpretation of the reaction channel of CM velocity of 750 ms⁻¹ (outer circle in Fig. 15), with the help of the theoretical results (proton-loss pathway 1, Fig. 15), as being predominantly due to the sequence
\[
\text{CF}_2^+ + \text{D}_2 \rightarrow \text{D}_2\text{CF}_2^+ + \text{F} \rightarrow \text{DCF}^+ + \text{D}^+ + \text{F} \tag{16}
\]
with the molecular product in its ground singlet state and translational energy release of about 7 eV (reaction exothermicity of 6.32 eV, collision energy 1.16 eV). Shallow wells associated with this pathway were consistent with the forward peaking of the product DCF₂⁺ of this translational energy release. The channel of the CM velocity of 0.34 ms⁻¹ indicated a process of intermediate complex formation and the interpretation was the same mechanism as previously (proton-loss pathway 1), however, with DCF₂⁺...
in its excited triplet state and of the translational energy release of about 1.5 eV (exothermicity of this channel 0.56 eV). The large upcoming part of the hypersurface toward DCF$_2^+$ in its triplet state forms a deep well on the way to the final product.

3.2. Coincidence experiments

Interpretation of dissociative electron transfer and bond-forming reactions leading to more than two products requires the assumption of subsequent decomposition of the primary reaction product out of the field of the departing primary products, if only one product ion is measured. The problems could be solved by registering more than one of the final products. The London
position sensitive coincidence (PSCO) apparatus described above provided an access to studies of reactions of this type.

3.2.1. CF₂⁺ + H₂O: Different mechanisms of OCF⁺ and HCF⁺ formation.

One of the first bond-forming reactions studied by the PSCO technique was the reaction between CF₂⁺ and H₂O [47]. Theoretical calculation of the stationary points on the potential energy hypersurface indicated an analogous shape of the surface as for the reaction CO₂⁺ + D₂ (Fig. 9), implying formation of a long-lived complex. Experiments using PSCO revealed formation of bond-forming products OCF⁺ and to a lesser extent HCF⁺ in reactions

\[\text{CF}_2^+ + \text{H}_2\text{O} \rightarrow \text{OCF}^+ + \text{H}^+ + \text{HF} \] \hspace{1cm} (17)

and

\[\text{CF}_2^+ + \text{H}_2\text{O} \rightarrow \text{HCF}_2^+ + \text{H}^+ + \text{O} \] \hspace{1cm} (18)

The scattering diagram of products of Reaction (17) is shown in Fig. 16. The scattering of H⁺ was approximately isotropic with respect to the CM velocity of the dication, the product OCF⁺ was also isotropically scattered and O backward scattered. The scattering of H⁺ implied the dissociation of an ion-neutral complex with a mean lifetime longer than several rotational periods of such species. The velocity distribution derived for the neutral product HF was also isotropic and sharply anticorrelated with that of OCF⁺ (Fig. 16). These results could be interpreted only if the collision complex decomposed to form H⁺ and (HO-CF₂)⁺ and this ion subsequently dissociated to HF and OCF⁺. A slight asymmetry in the scattering of H⁺ scattering with respect to OCF⁺ could be accounted for if the dissociation of (HO-CF₂)⁺ occurred within the field of the departing H⁺ [47].

The scattering diagram for Reaction (18) showed H⁺ approximately isotropically scattered with a large velocity with respect to the initial dication velocity. In contrast, HCF₂⁺ was forward scattered and O backward scattered. The scattering of H⁺ implied again a long-lived complex formation, but the differences in scattering of both the ion HCF₂⁺ and neutral O indicated a different mechanism that in Reaction (17). The forward scattering of HCF₂⁺ with respect to the initial velocity of the dication was indicative of a direct reaction mechanism in which CF₂⁺ flew by H₂O, picked up the hydride ion, leaving OH⁺ as the other reaction product; the OH⁺ then lived long enough to rotate significantly before decaying to H⁺ + O, both these products would be then mutually isotropically distributed (Fig. 17). Reaction (18) thus proceeded as a direct reaction to form HCF₂⁺ and OH⁺ with OH⁺ subsequently dissociating to H⁺ and O.

3.2.2. Reactions of N₂⁺⁺. Formation of the (N₂O₂)⁺⁺ complex

Reactions of the dication N₂⁺⁺ with oxygen are of ionospheric importance. Besides electron transfer and dissociative electron transfer, formation of NO⁺ was observed in chemical reactions [48].

Exothermicity of the respective processes leading to NO⁺ + O⁺ + N can range, depending on the product electronic states, between 1–12 eV. The scattering diagrams [48] showed that all products were sideways scattered over a rather large range of scattering angles and indicated involvement of an intermediate complex (N₂O₂)⁺⁺. The scattering in the internal frame revealed anticorrelation of velocities NO⁺ vs. O⁺ and the derived scattering of the neutral N indicated low correlation with velocities of both ion products (Fig. 18). The suggested mechanism compatible with these findings involved formation of an intermediate which lost initially a neutral species and then dissociated

\[\text{N}_2^+ + \text{O}_2 \rightarrow (\text{N}_2\text{O}_2)^{\ddagger} \rightarrow \text{NO}_2^+ + \text{N} \rightarrow \text{NO}^+ + \text{O}^+ + \text{N} \] \hspace{1cm} (19)

The mechanism was in agreement with energy considerations, involvement of electronic states of the species, theoretical calculations, and translational energy release as derived from the scattering diagrams. Theoretical considerations of the geometries of the (N₂O₂)⁺⁺ complex suggested a tetrahedral stable structure and made it possible to estimate the mean lifetime of the complex to more than about 0.1 ps. Also, the structure pointed to a rotating complex dissociating from its critical configuration perpendicularly to its principal axis, in agreement with the sideways peaking of the products.

The scattering investigation of the analogous reaction leading to NO⁺ + N⁺ + O [48] showed very similar results and led to the conclusion that Reaction (20) proceeded by a similar mechanism as Reaction (19), namely,

\[\text{N}_2^+ + \text{O}_2 \rightarrow (\text{N}_2\text{O}_2)^{\ddagger} \rightarrow \text{NO}_2^+ + \text{N} \rightarrow \text{NO}^+ + \text{N}^+ + \text{O} \] \hspace{1cm} (20)

Scattering investigation of other reactions of the dication N₂⁺⁺ by the PSCO method revealed the dynamics of formation of ArN⁺ in reaction of N₂⁺⁺ with Ar [28] and a series of bond-forming reactions in collisions with acetylene [28], water [28], and hydrogen [49].

In collisions of N₂⁺⁺ with hydrogen and deuterium the main reactions were non-dissociative and dissociative electron transfer. About 2% of the products resulted from bond-forming reaction leading to NH⁺. Experiments using the PSCO method made it possible to reveal the correlations between the velocities of products and showed that NH⁺ was formed by an N–atom loss from the intermediate complex (N₂H₂)⁺⁺ to give the dication NH₂⁺⁺ which dissociated to NH⁺ + H.

\[\text{N}_2^+ + \text{H}_2 \rightarrow (\text{N}_2\text{H}_2)^{\ddagger} \rightarrow \text{NH}_2^+ + \text{N} \rightarrow \text{NH}^+ + \text{H}^+ + \text{N} \] \hspace{1cm} (21)

In interaction of Ar⁺⁺ with acetylene [50], the main reaction was dissociative single-electron transfer with a small contribution of dissociative double-electron transfer. The bond-forming reaction leading to ArC⁺ represented about 1% of the products. Three different combinations of products could be identified ArC⁺ + CH⁺ + H; ArC⁺ + C⁺ + H + H; ArC⁺ + H⁺ + C + H. Studies by the coincidence technique revealed scattering very similar to the scattering
of the single-electron transfer reactions. The product ion ArC⁺ was scattered forward with respect to the center-of-mass in the direction of the incoming Ar²⁺ and the other ion product (H⁺ or C⁺ or CH⁺) in the opposite direction. This implied an essentially direct mechanism of the reaction in which the dication stripped a CH₀/C₀ group from the neutral C₂H₂, formed ArCH⁺ and CH⁺, and the excited ArCH⁺ subsequently dissociated.

3.3. Formation of polyaromatic dications in chemical reactions of dications

Numerous bimolecular chemical reactions of C₂⁺ with simple molecules (H, water, unsaturated hydrocarbons, ammonia and amines) or a different organic molecules (alcohols, aldehydes, ketones, esters, nitrogen heterocycles etc.) were reported from selected-ion-flow-tube (SIFT) studies of the C₆₀ reactivity [38]. In those the neutral partner M was fully attached to the C₆₀ structure forming a C₆₀M²⁺ dication product or led to a protonated cation product (reactions with RH). Electron transfer was in many cases an effective competing process.

A class of bond-forming reaction of doubly-charged arenes with neutral hydrocarbons leading doubly-charged hydrocarbon ions of a longer chain-length was observed in mass spectrometric experiments. Though the reactions were not investigated by the scattering methods (the studies would be difficult anyway, because of small recoil of heavy dications products on the light neutral product, H or H₂), they should be mentioned here, because of their general importance.
Besides non-dissociative and dissociative electron transfer reaction and chemical reactions in which two singly-charged products were formed, chemical reactions leading to doubly-charged products were observed and described [51] in studies of reactivity of doubly-charged ions from toluene with acetylene. Dication products of a longer carbon chain than the reactants were observed in reactions

\[
\begin{align*}
C_6H_5^+ + C_2H_2 & \rightarrow C_8H_7^+ + H \\
C_6H_5^+ + C_2H_2 & \rightarrow C_8H_6^+ + H_2
\end{align*}
\]

(22) (23)

The participation of the doubly charged ion \(C_6H_5^+\) as a reactant in the reaction was confirmed by measuring the same energy dependence for it (Fig. 19) and the product \(C_8H_7^+\) and by deuteration labeling which also showed H/D scrambling in the product \(C_8H_7^+\) (Fig. 19) thus pointing to the formation of a long-lived complex in its formation. Theoretical studies [51] revealed the pathway for formation of the products in Reactions (22) and (23) (Fig. 19) and involvement of the indene skeleton in the sequence of structures leading to them.

Subsequent studies of reactions between different dications of the type \(C_6H_6^+\) (dications from benzene, indene, naphthalene, phenanthrene) and acetylene, benzene [51–53], and methane [54] showed that \(C-C\) bond-forming reactions of the above mentioned type are rather general and of possible importance for astrophysics as a route to polyaromatic hydrocarbons (PAH) in planetary atmosphere and interstellar media [52].

More recently, bond-forming reactions of dications from cycloheptatriene (\(C_7H_6N_2\)) with Xe and N\(_2\) were described leading to products \(C_7H_6Xe^2+ + H_2\) and to adducts \(C_7H_6Xe^2+ + C_7H_6N_2^+\) [55].

3.4. Reactions of molecular trications

Similarly as with \(C_6^+\) dications, a series of chemical reactions of the trication \(C_6^+\) was observed in SIFT experiments [38] with simple molecules or different organic molecules. The reactions led to addition of the neutral partner \(M\) to the trication and formation of simple molecules or different organic molecules. The reactions led showed that \(C_6\) participates in the pathway for formation of the products in Reactions (22) and (23) and interactions between \(C_7H_6N_2\) and \(Xe^+\), and interactions between \(C_7H_6N_2\) and \(Xe^+\) leading to bond-forming products \(XeF_2\) and \(SF^+\) were described in surprisingly large yields ranging from a few percent up to 50% of the product ion sum. Also, interactions between \(Xe^+\) and \(CF_4\) leading to bond-forming products \(XeF_2\) and \(Xe^+\), and interactions between \(CS_2^+\) and \(CF_4^+\) leading to \(SF^+\) were observed.

In reactions with \(I^+\) non-dissociative and dissociative electron transfer predominated, but chemical reactions represent a non-negligible part. A rationalization of the product formation and of their yields was carried out using the potential surface model [24] modified to involve triply-charged ions. Theoretical calculations of the stationary points on the hypersurface \(I^+\)–CO indicated involvement of long-lived complexes in chemical product formation. Detailed scattering data using the PSCO techniques have been so far hampered by a low ion yield of triply-charged reagents.

4. Conclusions

The results of beam scattering experiments discussed in this contribution helped in understanding the dynamics of chemical (bond-forming) reactions of dications:

- a) The distinction and competition between electron transfer and bond-forming reactions leading either to two Coulomb-repulsing chemical products or to dication–neutral chemical products was established and a potential energy model was developed which accounts correctly for competition of these reactions.

- b) Described mechanisms of dication–neutral chemical reactions involve both direct reactions and intermediate complex formation and decomposition.

- c) Dissociative processes turn out to be usually sequential unimolecular decompositions of the primary chemical product as concluded from crossed-beam experiments and confirmed by the position-sensitive coincidence experiments. However, the later method described some processes in which the dissociation took place still within the field of separating primary chemical products.

- d) Theoretical calculations of stationary points on the potential hypersurfaces of the studied systems were of great importance in interpreting the experimental results, providing a significant help in elucidating the dynamics of the systems studied.

- e) Recently described chemical reactions of triply-charged ions with molecules open a way to studying yet another class of multiply-charged–neutral reactions.

Acknowledgments

This paper is dedicated to Veronica Bierbaum, a long-time respected colleague and a highly esteemed personal friend whose kindness, personal modesty, and competence made her one of the most admired personalities the author ever met. Collaboration with many colleagues, co-authors of papers mentioned in this review, is gratefully acknowledged.

References
